МАТЕМАТИЧЕСКАЯ МОДЕЛЬ РЕГУЛЯЦИИ ФИТОГОРМОНАМИ ФОРМИРОВАНИЯ МЕРИСТЕМАТИЧЕСКОЙ ЗОНЫ КОРНЯ

Полный текст:


Аннотация

Расположенная в кончике корня апикальная меристема растения – один из удобных объектов исследования организации ниши стволовых клеток. В апикальной меристеме корня митотически слабо активные клетки покоящегося центра соседствуют с активно делящимися клетками, которые теряют эту способность на определенном расстоянии от покоящегося центра. Известно, что важную роль в регуляции формирования такой структуры играют фитогормоны ауксин и цитокинин, однако конкретные механизмы поддержания ее в динамике пока неизвестны. В работе предложена математическая модель, которая обобщает экспериментальные данные о распределении ауксина и цитокинина вдоль продольной оси корня и их роли в регуляции клеточного цикла. Минимальный механизм регуляции клеточного цикла ауксином и цитокинином, лежащий в основе модели, позволил продемонстрировать in silico самоорганизацию меристематической зоны корня в градиентах концентраций этих веществ.


Об авторах

В. В. Лавреха
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


Н. А. Омельянчук
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


В. В. Миронова
Федеральное государственное бюджетное учреждение науки Институт цитологии и генетики Сибирского отделения Российской академии наук, Новосибирск, Россия Новосибирский национальный исследовательский государственный университет, Новосибирск, Россия
Россия


Список литературы

1. Вольтерра В. Математическая теория борьбы за существование. М.: Наука, 1976. 286 с.

2. Barrio R.A., Romero-Arias J.R., Noguez M.A. et al. Cell Patterns Emerge from Coupled Chemical and Physical Fields with Cell Proliferation Dynamics: The Arabidopsis thaliana Root as a Study System // PLoS Comput. Biol. 2013. V. 9 (5). P. e1003026.

3. Bhalerao R.P., Eklöf J., Ljung K. et al. Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings // Plant J. 2002. V. 29 (3). P. 325–332.

4. Bishopp A., Lehesranta S., Vaten A. et al. Phloem-transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem // Curr. Biol. 2011. V. 21. P. 927–932.

5. Breuer C., Braidwood L., Sugimoto K. Endocycling in the path of plant development // Current Opinion Plant Biology. 2014. V. 17. P. 78–85.

6. Del Pozo J.C., Manzano C. Auxin and the ubiquitin pathway. Two players-one target: the cell cycle in action // J. Exp. Bot. 2014. V. 65 (10). P. 2617–2632.

7. Dello Ioio R., Nakamura K., Moubayidin L. et al. A Genetic Framework for the Control of Cell Division and differentiation in the Root Meristem // Science. 2008. V. 322. P. 1380–1384.

8. Dolan L., Janmaat K., Willemsen V. et al. Cellular organisation of the Arabidopsis thaliana root // Development. 1993. V. 119. P. 71–84.

9. Grieneisen V.A., Xu J., Marée A.F. et al. Auxin transport sufficient for maximum and gradient guiding root growth // Nature. 2007. V. 449 (7165). P. 1008–1013.

10. Hemerly A.S., Ferreira P., De Almeida E.J. et al. Cdc2a expression in Arabidopsis is linked with competence for cell division // Plant Cell. 1993. V. 5. P. 1711–1723.

11. Higuchi M., Pischke M.S., Mähönen A.P. et al. In planta functions of the Arabidopsis cytokinin receptor family // Proc. Natl. Acad. Sci. 2004. V. 101. P. 8821–8826.

12. Ivanov V.B., Dubrovsky J.G. Longitudinal zonation pattern in plant roots: confl icts and solutions // Trends Plant Sci. 2013. V. 18 (5). P. 237–243.

13. Jurado S., Abraham Z., Manzano C. et al. The Arabidopsis cell cycle F-box protein SKP2A binds to auxin // Plant Cell. 2010. V. 22. P. 3891–3904.

14. Kuderova A., Urbankova I., Valkova M. et al. Effects of conditional IPT-dependent cytokinin overproduction on root architecture of Arabidopsis seedlings // Plant Cell. Physiol. 2008. V. 49. P. 570–582.

15. Lotka A.J., Dublin L.I. On the true rate of natural increase as exemplifi ed by the population of the United States // J. American statistical association. 1925. V. 20 (150).

16. Mironova V.V., Novoselova E.S., Doroshkov A.V. et al. Combined in silico/in vivo analysis of mechanisms providing for root apical meristem self-organization and maintenance // Annals Botany. 2012. V. 110 (2). P. 349–360.

17. Mironova V.V., Omelyanchuk N.A., Yosiphon G. et al. A plausible mechanism for auxin patterning along the developing root // BMC Systems Biology. 2010. V. 4. (98).

18. Sabatini S., Beis D., Wolkenfelt H. et al. An Auxin-Dependent Distal Organizer of Pattern and Polarity in the Arabidopsis Root // Cell. 1999. V. 99 (5). P. 463–472.

19. Sablowski R., Dornelas M. Interplay between cell growth and cell cycle in plants // J. Exp. Bot. 2014. V. 65 (10). P. 2703–2714.

20. Tromas A., Braun N., Muller P. et al. The auxin binding protei 1 is required for differential auxin respon-ses mediating root growth // PLoS One. 2009. V. 4 (9). P. e6648.

21. Yosiphon G., Mjolsness E. Plenum. 2007. http://computableplant.ics.uci.edu/theses/guy/downloads/papers/thesis.

22. Zürcher E., Tavor-Deslex D., Lituiev D. et al. A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta // Plant Physiol. 2013. V. 161 (3). P. 1066–1075.


Дополнительные файлы

Просмотров: 102

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)