Preview

Vavilov Journal of Genetics and Breeding

Advanced search

MATHEMATICAL MODEL OF PHYTOHORMONE REGULATION OF ROOT MERISTEMATIC ZONE FORMATION

Abstract

The apical meristem located at the root tip of a plant is one of the most convenient objects to study the organization of the stem cell niche. In the root apical meristem, mitotically inactive cells of the quiescent center coexist with intensely dividing cells, which lose this ability at a certain distance from the quiescent center. It is known that plant hormones auxin and cytokinin play an important role in the regulation of this structure formation, but the mechanisms maintaining the dynamics of this structure remain unknown. We propose a mathematical model that summarizes experimental data on the distribution of auxin and cytokinin along the root longitudinal axis and their role in cell cycle regulation.

About the Authors

V. V. Lavrekha
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


N. A. Omelyanchuk
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


V. V. Mironova
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk National Research State University, Novosibirsk, Russia
Russian Federation


References

1. Вольтерра В. Математическая теория борьбы за существование. М.: Наука, 1976. 286 с.

2. Barrio R.A., Romero-Arias J.R., Noguez M.A. et al. Cell Patterns Emerge from Coupled Chemical and Physical Fields with Cell Proliferation Dynamics: The Arabidopsis thaliana Root as a Study System // PLoS Comput. Biol. 2013. V. 9 (5). P. e1003026.

3. Bhalerao R.P., Eklöf J., Ljung K. et al. Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings // Plant J. 2002. V. 29 (3). P. 325–332.

4. Bishopp A., Lehesranta S., Vaten A. et al. Phloem-transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem // Curr. Biol. 2011. V. 21. P. 927–932.

5. Breuer C., Braidwood L., Sugimoto K. Endocycling in the path of plant development // Current Opinion Plant Biology. 2014. V. 17. P. 78–85.

6. Del Pozo J.C., Manzano C. Auxin and the ubiquitin pathway. Two players-one target: the cell cycle in action // J. Exp. Bot. 2014. V. 65 (10). P. 2617–2632.

7. Dello Ioio R., Nakamura K., Moubayidin L. et al. A Genetic Framework for the Control of Cell Division and differentiation in the Root Meristem // Science. 2008. V. 322. P. 1380–1384.

8. Dolan L., Janmaat K., Willemsen V. et al. Cellular organisation of the Arabidopsis thaliana root // Development. 1993. V. 119. P. 71–84.

9. Grieneisen V.A., Xu J., Marée A.F. et al. Auxin transport sufficient for maximum and gradient guiding root growth // Nature. 2007. V. 449 (7165). P. 1008–1013.

10. Hemerly A.S., Ferreira P., De Almeida E.J. et al. Cdc2a expression in Arabidopsis is linked with competence for cell division // Plant Cell. 1993. V. 5. P. 1711–1723.

11. Higuchi M., Pischke M.S., Mähönen A.P. et al. In planta functions of the Arabidopsis cytokinin receptor family // Proc. Natl. Acad. Sci. 2004. V. 101. P. 8821–8826.

12. Ivanov V.B., Dubrovsky J.G. Longitudinal zonation pattern in plant roots: confl icts and solutions // Trends Plant Sci. 2013. V. 18 (5). P. 237–243.

13. Jurado S., Abraham Z., Manzano C. et al. The Arabidopsis cell cycle F-box protein SKP2A binds to auxin // Plant Cell. 2010. V. 22. P. 3891–3904.

14. Kuderova A., Urbankova I., Valkova M. et al. Effects of conditional IPT-dependent cytokinin overproduction on root architecture of Arabidopsis seedlings // Plant Cell. Physiol. 2008. V. 49. P. 570–582.

15. Lotka A.J., Dublin L.I. On the true rate of natural increase as exemplifi ed by the population of the United States // J. American statistical association. 1925. V. 20 (150).

16. Mironova V.V., Novoselova E.S., Doroshkov A.V. et al. Combined in silico/in vivo analysis of mechanisms providing for root apical meristem self-organization and maintenance // Annals Botany. 2012. V. 110 (2). P. 349–360.

17. Mironova V.V., Omelyanchuk N.A., Yosiphon G. et al. A plausible mechanism for auxin patterning along the developing root // BMC Systems Biology. 2010. V. 4. (98).

18. Sabatini S., Beis D., Wolkenfelt H. et al. An Auxin-Dependent Distal Organizer of Pattern and Polarity in the Arabidopsis Root // Cell. 1999. V. 99 (5). P. 463–472.

19. Sablowski R., Dornelas M. Interplay between cell growth and cell cycle in plants // J. Exp. Bot. 2014. V. 65 (10). P. 2703–2714.

20. Tromas A., Braun N., Muller P. et al. The auxin binding protei 1 is required for differential auxin respon-ses mediating root growth // PLoS One. 2009. V. 4 (9). P. e6648.

21. Yosiphon G., Mjolsness E. Plenum. 2007. http://computableplant.ics.uci.edu/theses/guy/downloads/papers/thesis.

22. Zürcher E., Tavor-Deslex D., Lituiev D. et al. A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta // Plant Physiol. 2013. V. 161 (3). P. 1066–1075.


Review

Views: 587


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)