Estradiol-dependent and independent effects of FGF21 in obese female mice
https://doi.org/10.18699/VJGB-22-20
Abstract
The f ibroblast growth factor 21 (FGF21) synthesized in the liver, acting as a hormone, increases insulin sensitivity and energy expenditure. FGF21 administration has potent benef icial effects on obesity and diabetes in humans, cynomolgus monkey, and rodents. The therapeutic effects of FGF21 have been studied mainly in males. They are not always manifested in females, and they are accompanied by sex-specif ic activation of gene expression in tissues. We have suggested that one of the causes of sexual dimorphism in response to FGF21 is the effect of estradiol (E2). Currently, it is not known how estradiol modif ies the pharmacological effects of FGF21. The objective of this study was to study the inf luence of FGF21 on metabolic characteristics, food intake, and the expression of carbohydrate and fat metabolism genes in the liver, adipose tissue, and hypothalamus in female mice with alimentary obesity and low (ovariectomy) or high (ovariectomy + E2) blood estradiol level. In ovariectomized (OVX) females, the development of obesity was induced by the consumption of a high sweet-fat diet (standard chow, lard, and cookies) for 8 weeks. We investigated the effects of FGF21 on body weight, blood levels, food preferences and gene expression in tissues when FGF21 was administered separately or in combination with E2 for 13 days. In OVX obese females, FGF21, regardless of E2-treatment, did not affect body weight, and adipose tissue weight, or glucose tolerance but increased the consumption of standard chow, reduced blood glucose levels, and suppressed its own expression in the liver (Fgf21), as well as the expression of the G6pc and Acacα genes. This study is the f irst to show the modif ication of FGF21 effects by estradiol: inhibition of FGF21-inf luence on the expression of Irs2 and Pklr in the liver and potentiation of the FGF21-stimulated expression of Lepr and Klb in the hypothalamus. In addition, when administered together with estradiol, FGF21 exerted an inhibitory effect on the expression of Cpt1α in subcutaneous white adipose tissue (scWAT), whereas no stimulating FGF21 effects on the expression of Insr and Acacβ in scWAT or inhibitory FGF21 effect on the plasma insulin level were observed. The results suggest that the absence of FGF21 effects on body and adipose tissue weights in OVX obese females and its benef icial effect on food intake and blood glucose levels are not associated with the action of estradiol. However, estradiol affects the transcriptional effects of FGF21 in the liver, white adipose tissue, and hypothalamus, which may underlie sex differences in the FGF21 effect on the expression of metabolic genes and, possibly, in pharmacological FGF21 effects.
About the Authors
T. V. JakovlevaRussian Federation
Novosibirsk
A. Yu. Kazantseva
Russian Federation
Novosibirsk
A. D. Dubinina
Russian Federation
Novosibirsk
N. Yu. Balybina
Russian Federation
Novosibirsk
K. O. Baranov
Russian Federation
Novosibirsk
E. N. Makarova
Russian Federation
Novosibirsk
N. M. Bazhan
Russian Federation
Novosibirsk
References
1. Allard C., Bonnet F., Xu B., Coons L., Albarado D., Hill C., Fagherazzi G., Korach K.S., Levin E.R., Lefante J., Morrison C., MauvaisJarvis F. Activation of hepatic estrogen receptor-α increases energy expenditure by stimulating the production of fibroblast growth factor 21 in female mice. Mol. Metab. 2019;22:62-70. DOI 10.1016/j.molmet.2019.02.002.
2. Bazhan N., Yakovleva T., Denisova E., Dubinina A., Makarova E. Antidiabetic FGF21 action depended on sex and exerted only in male mice with diet induced obesity. Obes. Facts. 2019; 12(Suppl.1):189. DOI 10.1159/000489691.
3. Berglund E.D., Vianna C.R., Donato J., Jr., Kim M.H., Chuang J.C., Lee C.E., Lauzon D.A., Lin P., Brule L.J., Scott M.M., Coppari R., Elmquist J.K. Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice. J. Clin. Invest. 2012;122(3):1000-1009. DOI 10.1172/JCI59816.
4. Bian C., Bai B., Gao Q., Li S., Zhao Y. 17β-estradiol regulates glucose metabolism and insulin secretion in rat islet β cells through GPER and Akt/mTOR/GLUT2 pathway. Front. Endocrinol. (Lausanne). 2019;10:531. DOI 10.3389/fendo.2019.00531.
5. BonDurant L.D., Potthoff M.J. Fibroblast growth factor 21: a versatile regulator of metabolic homeostasis. Annu. Rev. Nutr. 2018;38: 173-196. DOI 10.1146/annurev-nutr-071816-064800.
6. Chau M.D., Gao J., Yang Q., Wu Z., Gromada J. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPKSIRT1-PGC-1α pathway. Proc. Natl. Acad. Sci. USA. 2010; 107(28):12553-12558. DOI 10.1073/pnas.1006962107.
7. Coskun T., Bina H.A., Schneider M.A., Dunbar J.D., Hu C.C., Chen Y., Moller D.E., Kharitonenkov A. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology. 2008;149(12):6018-6027. DOI 10.1210/en.2008-0816.
8. Cowley M.A., Smart J.L., Rubinstein M., Cerdán M.G., Diano S., Horvath T.L., Cone R.D., Low M.J. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001;411(6836):480-484. DOI 10.1038/35078085.
9. Fisher F.M., Estall J.L., Adams A.C., Antonellis P.J., Bina H.A., Flier J.S., Kharitonenkov A., Spiegelman B.M., Maratos-Flier E. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology. 2011;152(8):2996-3004. DOI 10.1210/en.2011-0281.
10. Fisher F.M., Maratos-Flier E. Understanding the physiology of FGF21. Annu. Rev. Physiol. 2016;78:223-241. DOI 10.1146/annurevphysiol-021115-105339.
11. Gao H., Bryzgalova G., Hedman E., Khan A., Efendic S., Gustafsson J.A., Dahlman-Wright K. Long-term administration of estradiol decreases expression of hepatic lipogenic genes and improves insulin sensitivity in ob/ob mice: a possible mechanism is through direct regulation of signal transducer and activator of transcription 3. Mol. Endocrinol. 2006;20(6):1287-1299. DOI 10.1210/me.2006-0012.
12. Hill C.M., Laeger T., Dehner M., Albarado D.C., Clarke B., Wanders D., Burke S.J., Collier J.J., Qualls-Creekmore E., Solon-Biet S.M., Simpson S.J., Berthoud H.R., Münzberg H., Morrison C.D. FGF21 signals protein status to the brain and adaptively regulates food choice and metabolism. Cell Rep. 2019;27(10): 2934-2947.e3. DOI 10.1016/j.celrep.2019.05.022.
13. Hua L., Zhuo Y., Jiang D., Li J., Huang X., Zhu Y., Li Z., Yan L., Jin C., Jiang X., Che L., Fang Z., Lin Y., Xu S., Li J., Feng B., Wu D. Identification of hepatic fibroblast growth factor 21 as a mediator in 17β-estradiol-induced white adipose tissue browning. FASEB J. 2018;32(10):5602-5611. DOI 10.1096/fj.201800240R.
14. Kharitonenkov A., Shiyanova T.L., Koester A., Ford A.M., Micanovic R., Galbreath E.J., Sandusky G.E., Hammond L.J., Moyers J.S., Owens R.A., Gromada J., Brozinick J.T., Hawkins E.D., Wroblewski V.J., Li D.S., Mehrbod F., Jaskunas S.R., Shanafelt A.B. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 2005;115(6):1627-1635. DOI 10.1172/JCI23606.
15. Kurosu H., Choi M., Ogawa Y., Dickson A.S., Goetz R., Eliseenkova A.V., Mohammadi M., Rosenblatt K.P., Kliewer S.A., Kuro- O M. Tissue-specific expression of βKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J. Biol. Chem. 2007;282(37):26687-26695. DOI 10.1074/jbc.M704165200.
16. Larson K.R., Chaffin A.T., Goodson M.L., Fang Y., Ryan K.K. Fibroblast growth factor-21 controls dietary protein intake in male mice. Endocrinology. 2019;160(5):1069-1080. DOI 10.1210/en.2018-01056.
17. Makarova E., Kazantseva A., Dubinina A., Jakovleva T., Balybina N., Baranov K., Bazhan N. The same metabolic response to FGF21 administration in male and female obese mice is accompanied by sex-specific changes in adipose tissue gene expression. Int. J. Mol. Sci. 2021;22(19):10561. DOI 10.3390/ijms221910561.
18. Makarova E.N., Yakovleva T.V., Balyibina N.Y., Baranov K.O., Denisova E.I., Dubinina A.D., Feofanova N.A., Bazhan N.M. Pharmacological effects of fibroblast growth factor 21 are sexspecific in mice with the lethal yellow (Ay) mutation. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2020;24(2):200-208. DOI 10.18699/VJ20.40-o.
19. Nadal A., Alonso-Magdalena P., Soriano S., Ropero A.B., Quesada I. The role of oestrogens in the adaptation of islets to insulin resistance. J. Physiol. 2009;587(Pt.21):5031-5037. DOI 10.1113/jphysiol.2009.177188.
20. Owen B.M., Mangelsdorf D.J., Kliewer S.A. Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol. Metab. 2015;26(1):22-29. DOI 10.1016/j.tem.2014.10.002.
21. Palmisano B.T., Zhu L., Stafford J.M. Role of estrogens in the regulation of liver lipid metabolism. Adv. Exp. Med. Biol. 2017;1043: 227-256. DOI 10.1007/978-3-319-70178-3_12.
22. Pan Y., Wang B., Zheng J., Xiong R., Fan Z., Ye Y., Zhang S., Li Q., Gong F., Wu C., Lin Z., Li X., Pan X. Pancreatic fibroblast growth factor 21 protects against type 2 diabetes in mice by promoting insulin expression and secretion in a PI3K/Akt signaling-dependent manner. J. Cell. Mol. Med. 2019;23(2):1059-1071. DOI 10.1111/jcmm.14007.
23. Riant E., Waget A., Cogo H., Arnal J.F., Burcelin R., Gourdy P. Estrogens protect against high-fat diet-induced insulin resistance and glucose intolerance in mice. Endocrinology. 2009;150(5): 2109-2117. DOI 10.1210/en.2008-0971.
24. Talukdar S., Zhou Y., Li D., Rossulek M., Dong J., Somayaji V., Weng Y., Clark R., Lanba A., Owen B.M., Brenner M.B., Trimmer J.K., Gropp K.E., Chabot J.R., Erion D.M., Rolph T.P., Goodwin B., Calle R.A. A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects. Cell Metab. 2016;23(3): 427-440. DOI 10.1016/j.cmet.2016.02.001.
25. Thammacharoen S., Geary N., Lutz T.A., Ogawa S., Asarian L. Divergent effects of estradiol and the estrogen receptor-α agonist PPT on eating and activation of PVN CRH neurons in ovariectomized rats and mice. Brain Res. 2009;1268:88-96. DOI 10.1016/j.brainres.2009.02.067.
26. Véniant M.M., Komorowski R., Chen P., Stanislaus S., Winters K., Hager T., Zhou L., Wada R., Hecht R., Xu J. Long-acting FGF21 has enhanced efficacy in diet-induced obese mice and in obese rhesus monkeys. Endocrinology. 2012;153(9):4192-4203. DOI 10.1210/en.2012-1211.
27. Vrtačnik P., Ostanek B., Mencej-Bedrač S., Marc J. The many faces of estrogen signaling. Biochem. Med. (Zagreb). 2014;24(3):329-342. DOI 10.11613/BM.2014.035.
28. Xu J., Stanislaus S., Chinookoswong N., Lau Y.Y., Hager T., Patel J., Ge H., Weiszmann J., Lu S.C., Graham M., Busby J., Hecht R., Li Y.S., Li Y., Lindberg R., Véniant M.M. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models – association with liver and adipose tissue effects. Am. J. Physiol. Endocrinol. Metab. 2009;297(5):E1105-E1114. DOI 10.1152/ajpendo.00348.2009.
29. Yan H., Yang W., Zhou F., Li X., Pan Q., Shen Z., Han G., Newell-Fugate A., Tian Y., Majeti R., Liu W., Xu Y., Wu C., Allred K., Allred C., Sun Y., Guo S. Estrogen improves insulin sensitivity and suppresses gluconeogenesis via the transcription factor Foxo1. Diabetes. 2019;68(2):291-304. DOI 10.2337/db18-0638.