Показатель снижения температуры растительного полога в селекции пшеницы на засухоустойчивость и жаростойкость
https://doi.org/10.18699/VJGB-22-24
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Полный текст:
Аннотация
Прошло более 40 лет с начала использования инфракрасного термометра для оценки засухо- и жаростойкости в селекции растений. За это время метод широко распространился во всем мире. Однако в России описываемый способ оценки стрессоустойчивости сортов до сих пор не применяется. Нами сделан обзор результатов использования инфракрасного термометра в селекции растений. На примере пшеницы описаны основные достоинства и недостатки показателя CTD (сanopy temperature depression), оцениваемого посредством инфракрасного термометра. Генотипы с более высоким значением CTD, а значит, более прохладным пологом в условиях засухи, используют большее количество доступной почвенной влаги для охлаждения за счет транспирации. CTD – интегрирующий признак, который диагностирует текущий водный статус растений. Коэффициент вариации показателя CTD находится в пределах 10–43 %. В значительном количестве работ показана его тесная взаимосвязь с урожайностью и высокая наследуемость, однако в целом больший коэффициент наследуемости имела урожайность. Применение показателя CTD в практической селекции пшеницы оспаривается рядом исследователей из-за значительного количества влияющих на него факторов. CTD тесно связан с другими признаками, отражающими водный статус растений или результат адаптации к засухе или жаре. Локусы количественных признаков, ассоциированные с CTD, обнаружены на всех хромосомах, за исключением хромосомы 3D. Выявленные локусы часто описывают небольшую часть фенотипической изменчивости (10–20 %, чаще менее 10 %), что затруднит пирамидирование генов, связанных с температурой полога, посредством маркерной селекции. Оценка показателя CTD надежна, технически проста и производительна и при надлежащем ее использовании позволяет объективно определить одну из сторон жаро- и засухоустойчивости сортов, сохранив растения в живом виде, что выгодно отличает ее от других методов. Наилучший результат описываемый метод демонстрирует в условиях терминальной засухи.
Список литературы
1. Acuña-Galindo M.A., Mason R.E., Subramanian N.K., Hays D.B. Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Sci. 2015;55(2):477-492. https://doi.org/10.2135/cropsci2013.11.0793.
2. Al-Ghzawi A.L.A., Khalaf Y.B., Al-Ajlouni Z.I., AL-Quraan N.A., Musallam I., Hani N.B. The effect of supplemental irrigation on canopy temperature depression, chlorophyll content, and water use efficiency in three wheat (Triticum aestivum L. and T. durum Desf.) varieties grown in dry regions of Jordan. Agriculture. 2018;8(5):67. https://doi.org/10.3390/agriculture8050067.
3. Awlachew Z.T., Singh R., Kaur S., Bains N.S., Chhuneja P. Transfer and mapping of the heat tolerance component traits of Aegilops speltoides in tetraploid wheat Triticum durum. Mol. Breed. 2016;36:78. https://doi.org/10.1007/s11032-016-0499-2.
4. Bahar B., Yildirim M., Barutcular C., Genc I. Effect of CTD on grain yield and yield component in bread and durum wheat. Not. Bot. Horti Agrobot. Cluj-Napoca. 2008;36(1):34-37. https://doi.org/10.15835/nbha36187.
5. Bala P., Sikder S. Heat stress indices, correlation and regression analysis of wheat genotypes for yield potential. Int. J. Curr. Agric. Sci. 2017;7(4):190-194.
6. Balota M., Green A.J., Griffey C.A., Pitman R., Thomason W. Genetic gains for physiological traits associated with yield in soft red winter wheat in the Eastern United States from 1919 to 2009. Eur. J. Agron. 2017;84:76-83. https://doi.org/10.1016/j.eja.2016.11.008.
7. Balota M., Peters T.R., Payne W.A., Evett S.R. Morphological and physiological traits related with canopy temperature depression in three-closely related wheat lines. Crop Sci. 2008;48(5):1897-1910. https://doi.org/10.2135/cropsci2007.06.0317.
8. Bellundagi A., Singh G.P., Prabhu K.V., Arora A., Neelu J., Ramya P., Singh A.M., Singh P.K., Ahlawat A. Early ground cover and other physiological traits as efficient selection criteria for grain yield under moisture deficit stress conditions in wheat (Triticum aestivum L.). Indian J. Plant Physiol. 2013;18:277-281. https://doi.org/10.1007/s40502-013-0047-6.
9. Berger B., Parent B., Tester M. High-throughput shoot imaging to study drought responses. J. Exp. Bot. 2010;61(13):3519-3528. https://doi.org/10.1093/jxb/erq201.
10. Blum A. Drought resistance, water-use efficiency, and yield potential - are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 2005;56(11):1159-1168. https://doi.org/10.1071/AR05069.
11. Blum A., Mayer J., Gozlan G. Infrared thermal sensing of plant canopies as a screening technique for dehydration avoidance in wheat. Field Crops Res. 1982;5:137-146. https://doi.org/10.1016/0378-4290(82)90014-4.
12. Bonari A., Edalat M., Ghadiri H., Kazemeini S.A., Modarresi M. The study of temperature depression and its association with grain yield in six wheat cultivars under heat stress conditions and salicylic acid application. Iran Agric. Res. 2020;39(1):99-108. https://doi.org/10.22099/iar.2020.31975.1318.
13. Chaves M.M. Thermography to explore plant-environment interactions. J. Exp. Bot. 2013;64(13):3937-3949. https://doi.org/10.1093/jxb/ert029.
14. Cheng J.-J., Li H., Ren B., Zhou C.-J., Kang Z.-S., Huang L.-L. Effect of canopy temperature on the stripe rust resistance of wheat. N. Z. J. Crop Hortic. Sci. 2015;43(4):306-315. https://doi.org/10.1080/01140671.2015.1098708.
15. Cossani C.M., Reynolds M.P. Physiological traits for improving heat tolerance in wheat. Plant Physiol. 2012;160(4):1710-1718. https://doi.org/10.1104/pp.112.207753.
16. Fang Q., Zhang X., Chen S., Shao L., Sun H. Selecting traits to increase winter wheat yield under climate change in the North China Plain. Field Crops Res. 2017;207:30-41. https://doi.org/10.1016/j.fcr.2017.03.005.
17. Gao F., Liu J., Yang L., Wu X., Xiao Y., Xia X., He Z. Genome-wide linkage mapping of QTL for physiological traits in a Chinese wheat population using the 90K SNP array. Euphytica. 2016;209(3):789-804. https://doi.org/10.1007/s10681-016-1682-6.
18. Gulnaz S., Zulkiffal M., Sajjad M., Ahmed J., Musa M., Abdullah M., Ahsan A., Refman A. Identifying Pakistani wheat landraces as genetic resources for yield potential, heat tolerance and rust resistance. Int. J. Agric. Biol. 2019;21(3):520-526. https://doi.org/10.17957/IJAB/15.0924.
19. Guo J., Tian G., Zhou Y., Wang M., Ling N., Shen Q., Guo S. Evaluation of the grain yield and nitrogen nutrient status of wheat (Triticum aestivum L.) using thermal imaging. Field Crops Res. 2016;196:463-472. https://doi.org/10.1016/j.fcr.2016.08.008.
20. Jackson R.D., Idso S.B., Reginato R.J., Pinter P.J. Canopy temperature as a crop water-stress indicator. Water Resour. Res. 1981;17(4):1133-1138. https://doi.org/10.1029/WR017i004p01133.
21. Jackson R.D., Reginato R.J., Idso S.B. Wheat canopy temperature - practical tool for evaluating water requirements. Water Resour. Res. 1977;13(3):651-656. https://doi.org/10.1029/WR013i003p00651.
22. Jokar F., Karimizadeh R., Masoumiasl A., Fahliani R.A. Canopy temperature and chlorophyll content are effective measures of drought stress tolerance in durum wheat. Not. Sci. Biol. 2018;10(4):575-583. https://doi.org/10.25835/nsb10410288.
23. Kaur S., Singh S.P., Kingra P.K. Canopy temperature as indicator of thermal and nutrient stresses in wheat crop. Mausam. 2018;69(2): 309-314.
24. Khalid M., Afzal F., Gul A., Amir R., Subhani A., Ahmed Z., Mahmood Z., Xia X., Rasheed A., He Z. Molecular characterization of 87 functional genes in wheat diversity panel and their association with phenotypes under well-watered and water-limited conditions. Front. Plant Sci. 2019;10:717. https://doi.org/10.3389/fpls.2019.00717.
25. Khan A., Ahmad M., Shah M.K.N., Ahmed M. Genetic manifestation of physio-morphic and yield related traits conferring thermotolerance in wheat. Pak. J. Bot. 2020;52(5):1545-1552. https://doi.org/10.30848/PJB2020-5(27).
26. Kumar J., Kumar M., Singh S.K., Singh L. Estimation of genetic variability and heritability in bread wheat under abiotic stress. Int. J. Pure Appl. Biosci. 2017;5(1):156-163. https://doi.org/10.18782/2320-7051.2475.
27. Liang X., Liu Y., Chen J., Adams C. Late-season photosynthetic rate and senescence were associated with grain yield in winter wheat of diverse origins. J. Agron. Crop Sci. 2018;204(1):1-12. https://doi.org/10.1111/jac.12231.
28. Lopes M.S., Reynolds M.P., McIntyre C.L., Mathews K.L., Kamali M.R.J., Mossad M., Feltaous Y., Tahir I.S.A, Chatrath R., Ogbonnaya F., Baum M. QTL for yield and associated traits in the Seri/Babax population grown across several environments in Mexico, in the West Asia, North Africa, and South Asia regions. Theor. Appl. Genet. 2013;126(4):971-984. https://doi.org/10.1007/s00122-012-2030-4.
29. Lu Y., Yan Z., Li L., Gao C., Shao L. Selecting traits to improve the yield and water use efficiency of winter wheat under limited water supply. Agric. Water Manag. 2020;242:106410. https://doi.org/10.1016/j.agwat.2020.106410.
30. Mason R.E., Hays D.B., Mondal S., Ibrahim A.M.H., Basnet B.R. QTL for yield, yield components and canopy temperature depression in wheat under late sown field conditions. Euphytica. 2013;194:243-259. https://doi.org/10.1007/ s10681-013-0951-x.
31. Mason R.E., Mondal S., Beecher F., Hays D. Genetic loci linking improved heat tolerance in wheat (Triticum aestivum L.) to lower leaf and spike temperatures under controlled conditions. Euphytica. 2011;180:181-194. https://doi.org/10.1007/s10681-011-0349-6.
32. Mohammed S., Huggins T., Mason E., Beecher F., Chick C., Sengodon P., Paudel A., Ibrahim A., Tilley M., Hays D. Mapping the genetic loci regulating leaf epicuticular wax, canopy temperature and drought susceptibility index in Triticum aestivum L. Crop Sci. 2021;61:2294-2305. https://doi.org/10.1002/csc2.20458.
33. Mondal S., Mason R.E., Huggins T., Hays D.B. QTL on wheat (Triticum aestivum L.) chromosomes 1B, 3D and 5A are associated with constitutive production of leaf cuticular wax and may contribute to lower leaf temperatures under heat stress. Euphytica. 2015;201: 123-130. https://doi.org/10.1007/s10681-014-1193-2.
34. Nagai T., Makino A. Differences between rice and wheat in temperature responses of photosynthesis and plant growth. Plant Cell Physiol. 2009;50(4):744-755. https://doi.org/10.1093/pcp/pcp029.
35. Olivares-Villegas J.J., Reynolds M.P., McDonald G.K. Drought-adaptive attributes in the Seri/Babax hexaploid wheat population. Funct. Plant Biol. 2007;34(3):189-203. https://doi.org/10.1071/FP06148.
36. Ortiz R., Sayre K.D., Govaerts B., Gupta R., Subbarao G.V., Ban T., Hodson D., Dixon J.M., Ortiz-Monasterio J.I., Reynolds M. Climate change: сan wheat beat the heat? Agric. Ecosyst. Environ. 2008;126(1-2):46-58. https://doi.org/10.1016/j.agee.2008.01.019.
37. Paliwal R., Roder M.S., Kumar U., Srivastava J.P., Joshi A.K. QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theor. Appl. Genet. 2012;125(3):561-575. https://doi.org/10.1007/s00122-012-1853-3.
38. Pinto R.S., Reynolds M.P., Mathews K.L., McIntyre C.L., Olivares-Villegas J.J., Chapman S.C. Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor. Appl. Genet. 2010;121(6):1001-1021. https://doi.org/10.1007/s00122-010-1351-4.
39. Pinto R.S., Reynolds M.P. Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat. Theor. Appl. Genet. 2015;128:575-585. https://doi.org/10.1007/s00122-015-2453-9.
40. Rahman M., Barma N., Biswas B., Khan A., Rahman J. Study on morpho-physiological traits in spring wheat (Triticum aestivum L.) under rainfed condition. Bangladesh J. Agric. Res. 2016;41(2):235-250. https://doi.org/10.3329/bjar.v41i2.28227.
41. Rattey A., Shorter R., Chapman S. Evaluation of CIMMYT conventional and synthetic spring wheat germplasm in rainfed sub-tropical environments. II. Correlated response for grain yield components and physiological traits due to selection for grain yield. Field Crops Res. 2011;124(2):195-204. https://doi.org/10.1016/j.fcr.2011.02.006.
42. Rebetzke G.J., Rattey A.R., Farquhar G.D., Richards R.A., Condon A.G. Genomic regions for canopy temperature and their genetic association with stomatal conductance and grain yield in wheat. Funct. Plant Biol. 2013;40(1):14-33. https://doi.org/10.1071/FP12184.
43. Reynolds M., Manes Y., Izanloo A., Langridge P. Phenotyping approaches for physiological breeding and gene discovery in wheat. Ann. Appl. Biol. 2009;155(3):309-320. https://doi.org/10.1111/j.1744-7348.2009.00351.x.
44. Reynolds M.P., Ortiz-Monasterio J.I., McNab A. Application of physiology in wheat breeding. Mexico: CIMMYT, 2001.
45. Reynolds M.P., Pierre C.S., Saad A.S.I., Vargas M., Condon A.G. Evaluating potential genetic gains in wheat associated with stressadaptive trait expression in elite genetic resources under drought and heat stress. Crop Sci. 2007;47(S3):S-172-S-189. https://doi.org/10.2135/cropsci2007.10.0022IPBS.
46. Royo C., Villegas D., Del Moral L.F.G., Elhani S., Aparicio N., Rharrabti Y., Araus J.L. Comparative performance of carbon isotope discrimination and canopy temperature depression as predictors of genotypes differences in durum wheat yield in Spain. Aust. J. Agric. Res. 2002;53(3):561-569. https://doi.org/10.1071/AR01016.
47. Sharma D., Jaiswal J.P., Singh N.K., Chauhan A., Gahtyari N.C. Developing a selection criterion for terminal heat tolerance in bread wheat based on various mopho-physiological traits. Int. J. Curr. Microbiol. Appl. Sci. 2018;7(7):2716-2726. https://doi.org/10.20546/ijcmas.2018.707.318.
48. Sharma P., Sareen S., Saini M.S. Assessing genetic variation for heat stress tolerance in Indian bread wheat genotypes using morpho physiological traits and molecular markers. Plant Genet. Resour. 2017;15(6):539-547. https://doi.org/10.1017/S1479262116000241.
49. Sofi P.A., Ara A., Gull M., Rehman K. Canopy temperature depression as an effective physiological trait for drought screening. In: Ondrasek G. (Ed.) Drought-Detection and Solutions. London: IntechOpen, 2019;77-92. https://doi.org/10.5772/intechopen.85966.
50. Sohail M., Hussain I., Qamar M., Tanveer S.K., Abbas S.H., Ali Z., Imtiaz M. Evaluation of spring wheat genotypes for climatic adaptability using canopy temperature as physiological indicator. Pak. J. Agric. Sci. 2020;33(1):89-96. https://doi.org/10.17582/journal.pjar/2020/33.1.89.96.
51. Sukumaran S., Dreisigacker S., Lopes M., Chavez P., Reynolds M.P. Genome‑wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor. Appl. Genet. 2015;128(2):353-363. https://doi.org/10.1007/s00122-014-2435-3.
52. Thapa S., Jessup K.E., Pradhan G.P., Rudd J.C., Liu S., Mahan J.R., Devkota R.N., Baker J.A., Xue Q. Canopy temperature depression at grain filling correlates to winter wheat yield in the U.S. Southern High Plains. Field Crops Res. 2018;217:11-19. https://doi.org/10.1016/j.fcr.2017.12.005.
53. Udovenko G.V. Character of adaptation reaction and causes of different resistance of plants to extremal conditions. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 1973;49(3):258-268. (in Russian)
54. Wang Y., Zia-Khan S., Owusu-Adu S., Miedaner T., Müller J. Early detection of Zymoseptoria tritici in winter wheat by infrared thermography. Agriculture. 2019;9(7):139. https://doi.org/10.3390/agriculture 9070139.
55. Wardlaw I.F., Dawson I.A., Munibi P., Fewster R. The tolerance of wheat to high temperatures during reproductive growth. I. Survey procedures and general response patterns. Aust. J. Agric. Res. 1989;40(1):1-13. https://doi.org/10.1071/AR9890001.
56. White J.W., Andrade-Sanchez P., Gore M.A., Bronson K.F., Coffelt T.A., Conley M.M. Field-based phenomics for plant genetics research. Field Crop Res. 2012;133:101-112. https://doi.org/10.1016/j.fcr.2012.04.003.
57. Yang D.Q., Dong W.H., Luo Y.L., Song W.T., Cai T., Li Y., Yin Y.P., Wang Z.L. Effects of nitrogen application and supplemental irrigation on canopy temperature and photosynthetic characteristics in winter wheat. J. Agric. Sci. Technol. 2018;156(1):13-23. https://doi.org/10.1017/S0021859617000946.
58. Yousfi S., Gracia-Romero A., Kellas N., Kaddour M., Chadouli A., Karrou M., Araus J.L., Serret M.D. Combined use of low-cost remote sensing techniques and δ13C to assess bread wheat grain yield under different water and nitrogen conditions. Agronomy. 2019;9(6):285. https://doi.org/10.3390/agronomy9060285.
59. Zhang X., Zhang X., Chen S., Sun H., Shao L., Liu X. Optimized timing of using canopy temperature to select high-yielding cultivars of winter wheat under different water regimes. Exp. Agric. 2018;54(2): 257-272. https://doi.org/10.1017/S0014479716000235.
60. Zhang Y., Zhang Y., Wang Z., Wang Z. Characteristics of canopy structure and contributions of non-leaf organs to yield in winter wheat under different irrigated conditions. Field Crops Res. 2011;123(3): 187-195. https://doi.org/10.1016/j.fcr.2011.04.014.