Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Показатель снижения температуры растительного полога в селекции пшеницы на засухоустойчивость и жаростойкость

https://doi.org/10.18699/VJGB-22-24

Аннотация

Прошло более 40 лет с начала использования инфракрасного термометра для оценки засухо- и жаростойкости в селекции растений. За это время метод широко распространился во всем мире. Однако в России описываемый способ оценки стрессоустойчивости сортов до сих пор не применяется. Нами сделан обзор результатов использования инфракрасного термометра в селекции растений. На примере пшеницы описаны основные достоинства и недостатки показателя CTD (сanopy temperature depression), оцениваемого посредством инфракрасного термометра. Генотипы с более высоким значением CTD, а значит, более прохладным пологом в условиях засухи, используют большее количество доступной почвенной влаги для охлаждения за счет транспирации. CTD – интегрирующий признак, который диагностирует текущий водный статус растений. Коэффициент вариации показателя CTD находится в пределах 10–43 %. В значительном количестве работ показана его тесная взаимосвязь с урожайностью и высокая наследуемость, однако в целом больший коэффициент наследуемости имела урожайность. Применение показателя CTD в практической селекции пшеницы оспаривается рядом исследователей из-за значительного количества влияющих на него факторов. CTD тесно связан с другими признаками, отражающими водный статус растений или результат адаптации к засухе или жаре. Локусы количественных признаков, ассоциированные с CTD, обнаружены на всех хромосомах, за исключением хромосомы 3D. Выявленные локусы часто описывают небольшую часть фенотипической изменчивости (10–20 %, чаще менее 10 %), что затруднит пирамидирование генов, связанных с температурой полога, посредством маркерной селекции. Оценка показателя CTD надежна, технически проста и производительна и при надлежащем ее использовании позволяет объективно определить одну из сторон жаро- и засухоустойчивости сортов, сохранив растения в живом виде, что выгодно отличает ее от других методов. Наилучший результат описываемый метод демонстрирует в условиях терминальной засухи.

Об авторе

С. Б. Лепехов
Федеральный Алтайский научный центр агробиотехнологий
Россия

Барнаул



Список литературы

1. Acuña-Galindo M.A., Mason R.E., Subramanian N.K., Hays D.B. Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Sci. 2015;55(2):477-492. DOI 10.2135/cropsci2013.11.0793.

2. Al-Ghzawi A.L.A., Khalaf Y.B., Al-Ajlouni Z.I., AL-Quraan N.A., Musallam I., Hani N.B. The effect of supplemental irrigation on canopy temperature depression, chlorophyll content, and water use efficiency in three wheat (Triticum aestivum L. and T. durum Desf.) varieties grown in dry regions of Jordan. Agriculture. 2018;8(5):67. DOI 10.3390/agriculture8050067.

3. Awlachew Z.T., Singh R., Kaur S., Bains N.S., Chhuneja P. Transfer and mapping of the heat tolerance component traits of Aegilops speltoides in tetraploid wheat Triticum durum. Mol. Breed. 2016;36:78. DOI 10.1007/s11032-016-0499-2.

4. Bahar B., Yildirim M., Barutcular C., Genc I. Effect of CTD on grain yield and yield component in bread and durum wheat. Not. Bot. Horti Agrobot. Cluj-Napoca. 2008;36(1):34-37. DOI 10.15835/nbha36187.

5. Bala P., Sikder S. Heat stress indices, correlation and regression analysis of wheat genotypes for yield potential. Int. J. Curr. Agric. Sci. 2017;7(4):190-194.

6. Balota M., Green A.J., Griffey C.A., Pitman R., Thomason W. Genetic gains for physiological traits associated with yield in soft red winter wheat in the Eastern United States from 1919 to 2009. Eur. J. Agron. 2017;84:76-83. DOI 10.1016/j.eja.2016.11.008.

7. Balota M., Peters T.R., Payne W.A., Evett S.R. Morphological and physiological traits related with canopy temperature depression in three-closely related wheat lines. Crop Sci. 2008;48(5):1897-1910. DOI 10.2135/cropsci2007.06.0317.

8. Bellundagi A., Singh G.P., Prabhu K.V., Arora A., Neelu J., Ramya P., Singh A.M., Singh P.K., Ahlawat A. Early ground cover and other physiological traits as efficient selection criteria for grain yield under moisture deficit stress conditions in wheat (Triticum aestivum L.). Indian J. Plant Physiol. 2013;18:277-281. DOI 10.1007/s40502-013-0047-6.

9. Berger B., Parent B., Tester M. High-throughput shoot imaging to study drought responses. J. Exp. Bot. 2010;61(13):3519-3528. DOI 10.1093/jxb/erq201.

10. Blum A. Drought resistance, water-use efficiency, and yield potential – are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 2005;56(11):1159-1168. DOI 10.1071/AR05069.

11. Blum A., Mayer J., Gozlan G. Infrared thermal sensing of plant canopies as a screening technique for dehydration avoidance in wheat. Field Crops Res. 1982;5:137-146. DOI 10.1016/0378-4290(82)90014-4.

12. Bonari A., Edalat M., Ghadiri H., Kazemeini S.A., Modarresi M. The study of temperature depression and its association with grain yield in six wheat cultivars under heat stress conditions and salicylic acid application. Iran Agric. Res. 2020;39(1):99-108. DOI 10.22099/iar.2020.31975.1318.

13. Chaves M.M. Thermography to explore plant-environment interactions. J. Exp. Bot. 2013;64(13):3937-3949. DOI 10.1093/jxb/ert029.

14. Cheng J.-J., Li H., Ren B., Zhou C.-J., Kang Z.-S., Huang L.-L. Effect of canopy temperature on the stripe rust resistance of wheat. N. Z. J. Crop Hortic. Sci. 2015;43(4):306-315. DOI 10.1080/01140671.2015.1098708.

15. Cossani C.M., Reynolds M.P. Physiological traits for improving heat tolerance in wheat. Plant Physiol. 2012;160(4):1710-1718. DOI 10.1104/pp.112.207753.

16. Fang Q., Zhang X., Chen S., Shao L., Sun H. Selecting traits to increase winter wheat yield under climate change in the North China Plain. Field Crops Res. 2017;207:30-41. DOI 10.1016/j.fcr.2017.03.005.

17. Gao F., Liu J., Yang L., Wu X., Xiao Y., Xia X., He Z. Genome-wide linkage mapping of QTL for physiological traits in a Chinese wheat population using the 90K SNP array. Euphytica. 2016;209(3):789-804. DOI 10.1007/s10681-016-1682-6.

18. Gulnaz S., Zulkiffal M., Sajjad M., Ahmed J., Musa M., Abdullah M., Ahsan A., Refman A. Identifying Pakistani wheat landraces as genetic resources for yield potential, heat tolerance and rust resistance. Int. J. Agric. Biol. 2019;21(3):520-526. DOI 10.17957/IJAB/15.0924.

19. Guo J., Tian G., Zhou Y., Wang M., Ling N., Shen Q., Guo S. Evaluation of the grain yield and nitrogen nutrient status of wheat (Triticum aestivum L.) using thermal imaging. Field Crops Res. 2016;196:463-472. DOI 10.1016/j.fcr.2016.08.008.

20. Jackson R.D., Idso S.B., Reginato R.J., Pinter P.J. Canopy temperature as a crop water-stress indicator. Water Resour. Res. 1981;17(4):1133-1138. DOI 10.1029/WR017i004p01133.

21. Jackson R.D., Reginato R.J., Idso S.B. Wheat canopy temperature – practical tool for evaluating water requirements. Water Resour. Res. 1977;13(3):651-656. DOI 10.1029/WR013i003p00651.

22. Jokar F., Karimizadeh R., Masoumiasl A., Fahliani R.A. Canopy temperature and chlorophyll content are effective measures of drought stress tolerance in durum wheat. Not. Sci. Biol. 2018;10(4):575-583. DOI 10.25835/nsb10410288.

23. Kaur S., Singh S.P., Kingra P.K. Canopy temperature as indicator of thermal and nutrient stresses in wheat crop. Mausam. 2018;69(2): 309-314.

24. Khalid M., Afzal F., Gul A., Amir R., Subhani A., Ahmed Z., Mahmood Z., Xia X., Rasheed A., He Z. Molecular characterization of 87 functional genes in wheat diversity panel and their association with phenotypes under well-watered and water-limited conditions. Front. Plant Sci. 2019;10:717. DOI 10.3389/fpls.2019.00717.

25. Khan A., Ahmad M., Shah M.K.N., Ahmed M. Genetic manifestation of physio-morphic and yield related traits conferring thermotolerance in wheat. Pak. J. Bot. 2020;52(5):1545-1552. DOI 10.30848/PJB2020-5(27).

26. Kumar J., Kumar M., Singh S.K., Singh L. Estimation of genetic variability and heritability in bread wheat under abiotic stress. Int. J. Pure Appl. Biosci. 2017;5(1):156-163. DOI 10.18782/2320-7051.2475.

27. Liang X., Liu Y., Chen J., Adams C. Late-season photosynthetic rate and senescence were associated with grain yield in winter wheat of diverse origins. J. Agron. Crop Sci. 2018;204(1):1-12. DOI 10.1111/jac.12231.

28. Lopes M.S., Reynolds M.P., McIntyre C.L., Mathews K.L., Kamali M.R.J., Mossad M., Feltaous Y., Tahir I.S.A, Chatrath R., Ogbonnaya F., Baum M. QTL for yield and associated traits in the Seri/Babax population grown across several environments in Mexico, in the West Asia, North Africa, and South Asia regions. Theor. Appl. Genet. 2013;126(4):971-984. DOI 10.1007/s00122-012-2030-4.

29. Lu Y., Yan Z., Li L., Gao C., Shao L. Selecting traits to improve the yield and water use efficiency of winter wheat under limited water supply. Agric. Water Manag. 2020;242:106410. DOI 10.1016/j.agwat.2020.106410.

30. Mason R.E., Hays D.B., Mondal S., Ibrahim A.M.H., Basnet B.R. QTL for yield, yield components and canopy temperature depression in wheat under late sown field conditions. Euphytica. 2013;194:243-259. DOI 10.1007/ s10681-013-0951-x.

31. Mason R.E., Mondal S., Beecher F., Hays D. Genetic loci linking improved heat tolerance in wheat (Triticum aestivum L.) to lower leaf and spike temperatures under controlled conditions. Euphytica. 2011;180:181-194. DOI 10.1007/s10681-011-0349-6.

32. Mohammed S., Huggins T., Mason E., Beecher F., Chick C., Sengodon P., Paudel A., Ibrahim A., Tilley M., Hays D. Mapping the genetic loci regulating leaf epicuticular wax, canopy temperature and drought susceptibility index in Triticum aestivum L. Crop Sci. 2021;61:2294-2305. DOI 10.1002/csc2.20458.

33. Mondal S., Mason R.E., Huggins T., Hays D.B. QTL on wheat (Triticum aestivum L.) chromosomes 1B, 3D and 5A are associated with constitutive production of leaf cuticular wax and may contribute to lower leaf temperatures under heat stress. Euphytica. 2015;201: 123-130. DOI 10.1007/s10681-014-1193-2.

34. Nagai T., Makino A. Differences between rice and wheat in temperature responses of photosynthesis and plant growth. Plant Cell Physiol. 2009;50(4):744-755. DOI 10.1093/pcp/pcp029.

35. Olivares-Villegas J.J., Reynolds M.P., McDonald G.K. Drought-adaptive attributes in the Seri/Babax hexaploid wheat population. Funct. Plant Biol. 2007;34(3):189-203. DOI 10.1071/FP06148.

36. Ortiz R., Sayre K.D., Govaerts B., Gupta R., Subbarao G.V., Ban T., Hodson D., Dixon J.M., Ortiz-Monasterio J.I., Reynolds M. Climate change: сan wheat beat the heat? Agric. Ecosyst. Environ. 2008;126(1-2):46-58. DOI 10.1016/j.agee.2008.01.019.

37. Paliwal R., Roder M.S., Kumar U., Srivastava J.P., Joshi A.K. QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theor. Appl. Genet. 2012;125(3):561-575. DOI 10.1007/s00122-012-1853-3.

38. Pinto R.S., Reynolds M.P., Mathews K.L., McIntyre C.L., Olivares-Villegas J.J., Chapman S.C. Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor. Appl. Genet. 2010;121(6):1001-1021. DOI 10.1007/s00122-010-1351-4.

39. Pinto R.S., Reynolds M.P. Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat. Theor. Appl. Genet. 2015;128:575-585. DOI 10.1007/s00122-015-2453-9.

40. Rahman M., Barma N., Biswas B., Khan A., Rahman J. Study on morpho-physiological traits in spring wheat (Triticum aestivum L.) under rainfed condition. Bangladesh J. Agric. Res. 2016;41(2):235-250. DOI 10.3329/bjar.v41i2.28227.

41. Rattey A., Shorter R., Chapman S. Evaluation of CIMMYT conventional and synthetic spring wheat germplasm in rainfed sub-tropical environments. II. Correlated response for grain yield components and physiological traits due to selection for grain yield. Field Crops Res. 2011;124(2):195-204. DOI 10.1016/j.fcr.2011.02.006.

42. Rebetzke G.J., Rattey A.R., Farquhar G.D., Richards R.A., Condon A.G. Genomic regions for canopy temperature and their genetic association with stomatal conductance and grain yield in wheat. Funct. Plant Biol. 2013;40(1):14-33. DOI 10.1071/FP12184.

43. Reynolds M., Manes Y., Izanloo A., Langridge P. Phenotyping approaches for physiological breeding and gene discovery in wheat. Ann. Appl. Biol. 2009;155(3):309-320. DOI 10.1111/j.1744-7348.2009.00351.x.

44. Reynolds M.P., Ortiz-Monasterio J.I., McNab A. Application of physiology in wheat breeding. Mexico: CIMMYT, 2001.

45. Reynolds M.P., Pierre C.S., Saad A.S.I., Vargas M., Condon A.G. Evaluating potential genetic gains in wheat associated with stressadaptive trait expression in elite genetic resources under drought and heat stress. Crop Sci. 2007;47(S3):S-172-S-189. DOI 10.2135/cropsci2007.10.0022IPBS.

46. Royo C., Villegas D., Del Moral L.F.G., Elhani S., Aparicio N., Rharrabti Y., Araus J.L. Comparative performance of carbon isotope discrimination and canopy temperature depression as predictors of genotypes differences in durum wheat yield in Spain. Aust. J. Agric. Res. 2002;53(3):561-569. DOI 10.1071/AR01016.

47. Sharma D., Jaiswal J.P., Singh N.K., Chauhan A., Gahtyari N.C. Developing a selection criterion for terminal heat tolerance in bread wheat based on various mopho-physiological traits. Int. J. Curr. Microbiol. Appl. Sci. 2018;7(7):2716-2726. DOI 10.20546/ijcmas.2018.707.318.

48. Sharma P., Sareen S., Saini M.S. Assessing genetic variation for heat stress tolerance in Indian bread wheat genotypes using morpho physiological traits and molecular markers. Plant Genet. Resour. 2017;15(6):539-547. DOI 10.1017/S1479262116000241.

49. Sofi P.A., Ara A., Gull M., Rehman K. Canopy temperature depression as an effective physiological trait for drought screening. In: Ondrasek G. (Ed.) Drought-Detection and Solutions. London: IntechOpen, 2019;77-92. DOI 10.5772/intechopen.85966.

50. Sohail M., Hussain I., Qamar M., Tanveer S.K., Abbas S.H., Ali Z., Imtiaz M. Evaluation of spring wheat genotypes for climatic adaptability using canopy temperature as physiological indicator. Pak. J. Agric. Sci. 2020;33(1):89-96. DOI 10.17582/journal.pjar/2020/33.1.89.96.

51. Sukumaran S., Dreisigacker S., Lopes M., Chavez P., Reynolds M.P. Genome‑wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor. Appl. Genet. 2015;128(2):353-363. DOI 10.1007/s00122-014-2435-3.

52. Thapa S., Jessup K.E., Pradhan G.P., Rudd J.C., Liu S., Mahan J.R., Devkota R.N., Baker J.A., Xue Q. Canopy temperature depression at grain filling correlates to winter wheat yield in the U.S. Southern High Plains. Field Crops Res. 2018;217:11-19. DOI 10.1016/j.fcr.2017.12.005.

53. Udovenko G.V. Character of adaptation reaction and causes of different resistance of plants to extremal conditions. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 1973;49(3):258-268. (in Russian)

54. Wang Y., Zia-Khan S., Owusu-Adu S., Miedaner T., Müller J. Early detection of Zymoseptoria tritici in winter wheat by infrared thermography. Agriculture. 2019;9(7):139. DOI 10.3390/agriculture 9070139.

55. Wardlaw I.F., Dawson I.A., Munibi P., Fewster R. The tolerance of wheat to high temperatures during reproductive growth. I. Survey procedures and general response patterns. Aust. J. Agric. Res. 1989;40(1):1-13. DOI 10.1071/AR9890001.

56. White J.W., Andrade-Sanchez P., Gore M.A., Bronson K.F., Coffelt T.A., Conley M.M. Field-based phenomics for plant genetics research. Field Crop Res. 2012;133:101-112. DOI 10.1016/j.fcr.2012.04.003.

57. Yang D.Q., Dong W.H., Luo Y.L., Song W.T., Cai T., Li Y., Yin Y.P., Wang Z.L. Effects of nitrogen application and supplemental irrigation on canopy temperature and photosynthetic characteristics in winter wheat. J. Agric. Sci. Technol. 2018;156(1):13-23. DOI 10.1017/S0021859617000946.

58. Yousfi S., Gracia-Romero A., Kellas N., Kaddour M., Chadouli A., Karrou M., Araus J.L., Serret M.D. Combined use of low-cost remote sensing techniques and δ13C to assess bread wheat grain yield under different water and nitrogen conditions. Agronomy. 2019;9(6):285. DOI 10.3390/agronomy9060285.

59. Zhang X., Zhang X., Chen S., Sun H., Shao L., Liu X. Optimized timing of using canopy temperature to select high-yielding cultivars of winter wheat under different water regimes. Exp. Agric. 2018;54(2): 257-272. DOI 10.1017/S0014479716000235.

60. Zhang Y., Zhang Y., Wang Z., Wang Z. Characteristics of canopy structure and contributions of non-leaf organs to yield in winter wheat under different irrigated conditions. Field Crops Res. 2011;123(3): 187-195. DOI 10.1016/j.fcr.2011.04.014.


Рецензия

Просмотров: 1015


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)