Preview

Vavilov Journal of Genetics and Breeding

Advanced search

THE SUITABILITY OF THE BMY2 AND WAXY GENES AND INTERNAL TRANSCRIBED SPACERS OF RRNA AS MARKERS FOR STUDYING GENETIC VARIABILITY IN ELYMUS SPECIES

Abstract

Elymus L. is a genus of the Poaceae family, which includes only polyploid species. It is widespread over all continents, with at least half of the species occurring in Asia, and this continent is considered to be its motherland. However, the diversity, genetic characteristics, and evolutionary interactions among Elymus species of some regions of Asia are still vague, and the Far East of Russia is one of such territories. Thus, investigation of evolutionary relations among species of Far East and Kamchatka is promising. In this work, several sequences of two nuclear genes and rDNA Internal Transcribed Spacers annotated in databases are analyzed. Nuclear genes sequences are shown to be more useful in building phylogeny at the interspecies level. Also, a region of the nuclear gene waxy is shown to vary among different haplomes. This variation makes it useful in investigating the genome constitutions of novel Elymus species. Finally, systematical status of E. kamczadalorum as a species was proven valid.

About the Authors

N. A. Shmakov
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


D. A. Afonnikov
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk National Research State University, Novosibirsk, Russia
Russian Federation


P. A. Belavin
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


A. V. Agafonov
Central Siberian Botanical Garden SB RAS, Novosibirsk, Russia
Russian Federation


References

1. Агафонов А.В. Система рекомбинационных и интрогрессивных генпулов StH-геномных видов рода Elymus L. Северной Евразии: дис. д-ра биол. наук. Центральный Сибирский ботанический сад, Новосибирск, 2004.

2. Агафонов А.В., Баум Б.Р. Индивидуальная изменчивость и репродуктивные свойства половых гибридов внутри комплекса Elymus trachycaulus (Poaceae: Triticeae) и близких таксонов. 1. Полиморфизм запасных белков эндосперма у биотипов Северной Америки и Евразии // Turczaninowia. 2000. T. 3. Вып. 1. С. 63–75.

3. Цвелев Н.Н., Пробатова Н.С. Роды Elymus L., Elytrigia Desv., Agropyron Gaertn., Psathyrostachys Nevski и Leymus Hochst. (Poaceae: Triticeae) во флоре России // Комаровские чтения. Владивосток: Дальнаука, 2010. Вып. 57. С. 5–102.

4. Altschul S.F., Gish W., Miller W. et al. Basic local alignment search tool // J. Mol. Biol. 1990. V. 215. P. 403–410.

5. Alvarez I.A., Wendel J.F. Ribosomal ITS sequences and plant phylogenetic inference // Molecular Phylogenetics Evolution. 2003. V. 29. Р. 417–434.

6. Dewey D.R. Synthetic hybrids of Hordeum bogdanii with Elymuscanadensis and Sitanionhystrix // American Journal Botany. 1971. V. 58. Р. 902–908.

7. Dewey D.R. The genomic system of classifi cation as a guide to intergeneric hybridization with the perennial Triticeae. Gene manipulation in plant improvement. N. Y.: Plenum Publ. Corp., 1984. P. 209–279.

8. Fan X., Sha L., Dong Z. et al. Phylogenetic relationships and Y genome origin in Elymus L. sensu lato (Triticeae; Poaceae) based on single-copy nuclear Acc1 and Pgk1 gene sequences // Molecular Phylogenetics Evolution. 2013. V. 69. Issue 3. P. 919–928.

9. Guindon S., Dufayard J., Lefort V. et al. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0 // Systematic Biology. 2010. V. 59 (3). Р. 307–321.

10. Han M.V., Zmasek C.M. phyloXML: XML for evolutionary biology and comparative genomics // BMC Bioinformatics. 2009. V. 10. Р. 356.

11. Larkin M.A., Blackshields G., Brown N.P. et al. ClustalW and ClustalX version 2 // Bioinformatics. 2007. V. 23 (21).

12. Liu Q., Ge S., Tang H. et al. Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences // New Phytologist. 2006. V. 170. Р. 411–420.

13. Löve A. Genetic evolution of the wheatgrasses // New Zealand J. Bot. 1982. V. 20. P. 169–186.

14. Mason-Gamer R. Phylogeny of a genomically diverse group of Elymus (Poaceae) allopolyploids reveals multiple levels of reticulation. Plos ONE, 2013.

15. Mason-Gamer R., Burns M., Naum M. Reticulate evolutionary history of a complex group of grasses: phylogeny of Elymus StStHH allotetraploids based on three nuclear genes. Plos ONE, 2010.

16. Mason-Gamer R., Weil C.F., Kellog E.A. Granule-bound starch synthase: structure, function and phylogenetic utility // Mol. Biol. Evol. 1998. V. 15 (12). Р. 1658–1673.

17. Mort M., Archibald J., Randle C. et al. Inferring phylogeny at low taxonomic levels: utility of rapidly evolving cpDNA and nuclear ITS loci // American Journal Botany. 2007. V. 94 (2). P. 173–183.

18. Okito P. Origin of the Y genome in Elymus. All Graduate Theses and Dissertation. Paper 95, 2008.

19. Posada D. jModelTest: phylogenetic model averaging // Mol. Biol. Evol. 2008. V. 25 (7). P. 1253–1256. doi: 10.1093/molbev/msn083.

20. Soltis E.D., Albert V.A., Leebens-Mack J., Bell C.D. Polyploidy and angiosperm diversifi cation // American Journal Botany. 2009. V. 96 (1). Р. 336–348.

21. The Plant List (2013). Version 1.1. Published on the Internet; http://www.theplantlist.org/ (accessed 1st January).

22. Wang R., von Bothmer R., Dvorak J. et al. Genome symbols in the Triticeae (Poaceae) // Proc. 2nd Int. Triticeae Symp. Logan, Utah, USA, 1994. P. 29–34.


Review

Views: 465


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)