THE NUMBER OF HOMOLOGS OF SOME ENZYMES IN THE TRYPTOPHAN BIOSYNTHESIS PATHWAY CORRELATES WITH THE PROPORTION OF PROTEINS ASSOCIATED WITH TRANSCRIPTION IN PLANTS
Abstract
The tryptophan biosynthesis pathway (TBP) is ubiquitous in most known organisms, being absent only from animals and some bacteria. It is conserved in plants, although various species differ in the number of TBP enzyme paralogs. In the current work we investigated a putative possible role of changes in the number of paralogs of TBP enzymes in the course of plant evolution. We identified TBP enzyme paralogs in plant species with fully sequenced genomes and estimated the relationship between its number and organismal complexity. It is shown that organismal complexity significantly correlates with the total number of TBP paralogs and for some enzymes specifically (ASA/ASB, PAI, and IGPS). We suggest that such a relationship arises because both organismal complexity and the increasing number of paralogs may be important for the evolutionary adaptation of land plants to variable environmental conditions.
About the Authors
I. I. TurnaevRussian Federation
I. R. Akberdin
Russian Federation
V. V. Suslov
Russian Federation
D. A. Afonnikov
Russian Federation
References
1. Картель Н.А., Макеева Е.Н., Мезенко А.М. Генетика = Genetics: энциклопедический словарь. Минск: Беларус навука, 2011. 758 с.
2. Колчанов Н.А., Суслов В.В., Гунбин К.В. Моделирование биологической эволюции: регуляторные генетические системы и кодирование биологической организации // Информационный вестник ВОГИC. 2004. Т. 8. № 2. C. 86–99.
3. Bohlmann J., DeLuca V., Eilert U., Martin W. Purification and cDNA cloning of anthranilate synthase from Ruta graveolens: modes of expression and properties of native and recombinant enzymes // Plant J. 1995. V. 7. No. 3. P. 491–501.
4. Feliner G.N., Rossello J.A. Concerted evolution of multigene and homoelogous recombination families. Plant genome diversity. Springer Wein Heidelberg, N. Y., Dordrecht, London, 2012. 171 p.
5. Huson D.H., Bryant D. Application of phylogenetic networks in evolutionary studies // Mol Biol Evol. 2006. V. 23. No. 2. P. 254–267.
6. Katoh K., Toh H. Recent developments in the MAFFT multiple sequence alignment program // Brief Bioinform. 2008. V. 9. No. 4. P. 286–298.
7. Lamesch P., Berardini T.Z., Li D. et al. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools // Nucleic Acids Res. 2012. V. 40. P. D1202–D1210.
8. Lang D., Weiche B., Timmerhaus G. et al. Genome-wide phylogenetic comparative analysis of plant transcriptional regulation: a timeline of loss, gain, expansion, and correlation with complexity // Genome Biol. Evol. 2010. V. 19. No. 2. P. 488–503.
9. Last R.L., Bissinger P.H., Mahoney D.J. et al. Tryptophan mutants in Arabidopsis: the consequences of duplicated tryptophan synthase beta genes // Plant Cell. 1991. V. 3. No. 4. P. 345–358.
10. Marchler-Bauer A., Zheng C., Chitsaz F. et al. CDD: conserved domains and protein three-dimensional structure // Nucleic Acids Research. 2013. V. 41. Р. D348–D352.
11. Niyogi K.K., Fink G.R. Two anthranilate synthase genes in Arabidopsis: defense-related regulation of the tryptophan pathway // Plant Cell. 1992. V. 4. No. 6. Р. 721–733.
12. Radwanski E.R., Last R.L. Tryptophan biosynthesis and metabolism: biochemical and molecular genetics // Plant Cell. 1995. V. 7. Р. 921–934.
13. Richardson A.O., Palmer J.D. Horizontal gene transfer in plants // Journal experimental Botany. 2007. V. 58. No. 1. P. 1–9.
14. Teichmann S.A., Babu M.M. Gene regulatory network growth by duplication // Nat Genet. 2004. V. 36. No. 5. Р. 492–496.
15. Tozawa Y., Hasegawa H., Terakawa T., Wakasa K. Characterization of rice anthranilate synthase alpha-subunit genes OASA1 and OASA2. Tryptophan accumulation in transgenic rice expressing a feedback-insensitive mutant of OASA1 // Plant Physiol. 2001. V. 126. No. 4. P. 1493–1506.
16. Van Bel M., Proost S., Wischnitzki E. et al. Dissecting plant genomes with the PLAZA comparative genomics platform // Plant Physiology. 2012. V. 158. No. 2. P. 590–600.
17. Vogel C., Chothia C. Protein family expansions and biological complexity // PLoS Comput Biol. 2006. V. 2. No. 5. Р. e48.
18. Zhao Y. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants // Mol. Plant. 2012. V. 5. No. 2 P. 334–338.