1. Akishev Z., Kiribayeva A., Mussakhmetov A., Baltin K., Ramankulov Y., Khassenov B. Constitutive expression of Camelus bactrianus prochymosin B in Pichia pastoris. Heliyon. 2021;7(5):e07137. https://doi.org/10.1016/j.heliyon.2021.e07137.
2. Bansal N., Drake M.A., Piraino P., Broe M.L., Harboe M., Fox P.F., McSweeney P.L.H. Suitability of recombinant camel (Camelus dromedarius) chymosin as a coagulant for Cheddar cheese. Int. Dairy J. 2009;19(9):510-517. https://doi.org/10.1016/j.idairyj.2009.03.010.
3. Belenkaya S.V., Balabova D.V., Belov A.N., Koval A.D., Shcherbakov D.N., Elchaninov V.V. Basic biochemical properties of recombinant chymosins (review). Appl. Biochem. Microbiol. 2020a;56(4):363-372. https://doi.org/10.1134/S0003683820040031.
4. Belenkaya S.V., Bondar A.A., Kurgina T.A., Elchaninov V.V., Bakulina A.Yu., Rukhlova E.A., Lavrik O.I., Ilyichev A.A., Shcherbakov D.N. Characterization of the Altai maral chymosin gene, production of a chymosin recombinant analog in the prokaryotic expression system, and analysis of its several biochemical properties. Biochemistry (Mosc.). 2020b;85(7):781-791. https://doi.org/10.1134/S0006297920070068.
5. Belenkaya S.V., Rudometov A.P., Shcherbakov D.N., Balabova D.V., Kriger A.V., Belov A.N., Koval A.D., Elchaninov V.V. Biochemical properties of recombinant chymosin in alpaca (Vicugna pacos L.). Appl. Biochem. Microbiol. 2018;54(6):569-576. https://doi.org/10.1134/S0003683818060054.
6. Belenkaya S.V., Shcherbakov D.N., Balabova D.V., Belov A.N., Koval A.D., Elchaninov V.V. Production of maral (Cervus elaphus sibiricus Severtzov) recombinant chymosin in the prokaryotic expression system and the study of the aggregate of its biochemical properties relevant for the cheese-making industry. Appl. Biochem. Microbiol. 2020c;56(6):647-656. https://doi.org/10.1134/S0003683820060034.
7. Belov A.N., Koval A.D., Avdanina E.A., Elchaninov V.V. Effects of milk clotting preparation on cheese organoleptic indices. Syrodelie i Maslodelie = Cheese Making and Butter Making. 2009;1:22-24. (in Russian)
8. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72(1-2):248-254. https://doi.org/10.1016/0003-2697(76)90527-3.
9. Chen H., Zhang G., Zhang Y., Dong Y., Yang K. Functional implications of disulfide bond, Cys206−Cys210, in recombinant prochymosin (chymosin). Biochemistry. 2000;39(40):12140-12148. https://doi.org/10.1021/bi000976o.
10. Costabel L.M., Bergamini C.V., Pozza L., Cuffia F., Candioti M.C., Hynes E. Influence of chymosin type and curd scalding temperature on proteolysis of hard cooked cheeses. J. Dairy Res. 2015;82(3):375-384. https://doi.org/10.1017/S0022029915000175.
11. D’Incecco P., Limbo S., Hogenboom J., Rosi V., Gobbi S., Pellegrino L. Impact of extending hard-cheese ripening: a multiparameter characterization of Parmigiano Reggiano cheese ripened up to 50 months. Foods. 2020;9(3):268. https://doi.org/10.3390/foods9030268.
12. Ersöz F., İnan M. Large-scale production of yak (Bos grunniens) chymosin A in Pichia pastoris. Protein Expr. Purif. 2019;154:126-133. https://doi.org/10.1016/j.pep.2018.10.007.
13. Eskandari M.H., Hosseini A., Zarasvand S.A., Aminlari M. Cloning, expression, purification and refolding of caprine prochymosin. Food Biotechnol. 2012;26(2):143-153. https://doi.org/10.1080/08905436.2012.670829.
14. Flamm E.L. How FDA approved chymosin: a case history. Nat. Biotechnol. 1991;9(4):349-351. https://doi.org/10.1038/nbt0491-349.
15. Fox P.F., Guinee T.P., Cogan T.M., McSweeney P.L.H. Enzymatic coagulation of milk. In: Fundamentals of Cheese Science. Boston: Springer, 2017;185-229. https://doi.org/10.1007/978-1-4899-7681-9_7.
16. Gumus P., Hayaloglu A.A. Effects of blends of camel and calf chymosin on proteolysis, residual coagulant activity, microstructure, and sensory characteristics of Beyaz peynir. J. Dairy Sci. 2019;102(7):5945-5956. https://doi.org/10.3168/jds.2018-15671.
17. Harboe M., Broe M.L., Qvist K.B. The production, action and application of rennet and coagulants. In: Law B.A., Tamime A.Y. (Eds.) Technology of Cheesemaking. Chichester: Wiley-Blackwell, 2010;98-129. https://doi.org/10.1002/9781444323740.ch3.
18. Jacob M., Jaros D., Rohm H. Recent advances in milk clotting enzymes. Int. J. Dairy Tech. 2011;64(1):14-33. https://doi.org/10.1111/j.1471-0307.2010.00633.x.
19. Jensen J.L., Molgaard A., Poulsen J.-C.N., Harboe M.K., Simonsen J.B., Lorentzen A.M., Hjernø K., Brink J.M., Qvist K.B., Larsen S. Camel and bovine chymosin: the relationship between their structures and cheese-making properties. Acta Crystallogr. D. Biol. Crystallogr. 2013;69(Pt.5):901-913. https://doi.org/10.1107/S0907444913003260.
20. Kappeler S.R., van den Brink H.J.M., Rahbek-Nielsen H., Farah Z., Puhan Z., Hansen E.B., Johansen E. Characterization of recombinant camel chymosin reveals superior properties for the coagulation of bovine and camel milk. Biochem. Biophys. Res. Commun. 2006;342(2):647-654. https://doi.org/10.1016/j.bbrc.2006.02.014.
21. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-685. https://doi.org/10.1038/227680a0.
22. Lamichhane P., Sharma P., Kennedy D., Kelly A.L., Sheehan J.J. Microstructure and fracture properties of semi-hard cheese: differentiating the effects of primary proteolysis and calcium solubilization. Food Res. Int. 2019;125:108525. https://doi.org/10.1016/j.foodres.2019.108525.
23. Lucey J.A. Formation and physical properties of milk protein gels. J. Dairy Sci. 2002;85(2):281-294. https://doi.org/10.3168/JDS.S0022-0302(02)74078-2.
24. Luo F., Jiang W.H., Yang Y.X., Li J., Jiang M.F. Cloning and expression of yak active chymosin in Pichia pastoris. Asian-Australas. J. Anim. Sci. 2016;29(9):1363-1370. https://doi.org/10.5713/AJAS.16.0038.
25. Mane A., McSweeney P.L.H. Proteolysis in Irish farmhouse Camembert cheese during ripening. J. Food Biochem. 2020;44(1):1-14. https://doi.org/10.1111/jfbc.13101.
26. Masotti F., Hogenboom J.A., Rosi V., de Noni I., Pellegrino L. Proteolysis indices related to cheese ripening and typicalness in PDO Grana Padano cheese. Int. Dairy J. 2010;20(5):352-359. https://doi.org/10.1016/j.idairyj.2009.11.020.
27. Moynihan A.C., Govindasamy-Lucey S., Jaeggi J.J., Johnson M.E., Lucey J.A., McSweeney P.L.H. Effect of camel chymosin on the texture, functionality, and sensory properties of low-moisture, part-skim Mozzarella cheese. J. Dairy Sci. 2014;97(1):85-96. https://doi.org/10.3168/jds.2013-7081.
28. Pedersen V.B., Christensen K.A., Foltmann B. Investigations on the activation of bovine prochymosin. Eur. J. Biochem. 1979;94(2):573-580. https://doi.org/10.1111/j.1432-1033.1979.tb12927.x.
29. Rogelj I., Perko B., Francky A., Penca V., Pungerčar J. Recombinant lamb chymosin as an alternative coagulating enzyme in cheese production. J. Dairy Sci. 2001;84(5):1020-1026. https://doi.org/10.3168/jds.S0022-0302(01)74561-4.
30. Sforza S., Cavatorta V., Lambertini F., Galaverna G., Dossena A., Marchelli R. Cheese peptidomics: a detailed study on the evolution of the oligopeptide fraction in Parmigiano-Reggiano cheese from curd to 24 months of aging. J. Dairy Sci. 2012;95(7):3514-3526. https://doi.org/10.3168/jds.2011-5046.
31. Singh T.K., Drake M.A., Cadwallader K.R. Flavor of Cheddar cheese: a chemical and sensory perspective. Compr. Rev. Food Sci. Food Saf. 2003;2(4):166-189. https://doi.org/10.1111/j.1541-4337.2003.tb00021.x.
32. Trono D. Recombinant enzymes in the food and pharmaceutical industries. In: Singh R.S., Singhania R.R., Pandey A., Larroche C. (Eds.) Biomass, Biofuels, Biochemicals: Advances in Enzyme Technology. Elsevier, 2019;349-387. https://doi.org/10.1016/B978-0-444-64114-4.00013-3.
33. Tyagi A., Kumar A., Mohanty A.K., Kaushik J.K., Grover S., Batish V.K. Expression of buffalo chymosin in Pichia pastoris for application in mozzarella cheese. LWT - Food Sci. Technol. 2017;84:733-739. https://doi.org/10.1016/j.lwt.2017.06.033.
34. Tyagi A., Kumar A., Yadav A.K., Chandola Saklani A., Grover S., Batish V.K. Functional expression of recombinant goat chymosin in Pichia pastoris bioreactor cultures: a commercially viable alternate. LWT - Food Sci. Technol. 2016;69:217-224. https://doi.org/10.1016/j.lwt.2016.01.015.
35. Vallejo J.A., Ageitos J.M., Poza M., Villa T.G. Short communication: a comparative analysis of recombinant chymosins. J. Dairy Sci. 2012;95(2):609-613. https://doi.org/10.3168/jds.2011-4445.
36. Vega-Hernández M.C., Gómez-Coello A., Villar J., ClaverieMartı ́ n F. Molecular cloning and expression in yeast of caprine prochymosin. J. Biotechnol. 2004;114(1-2):69-79. https://doi.org/10.1016/j.jbiotec.2004.06.002.
37. Wang N., Wang K.Y., Li G., Guo W., Liu D. Expression and characterization of camel chymosin in Pichia pastoris. Protein Expr. Purif. 2015;111:75-81. https://doi.org/10.1016/j.pep.2015.03.012.
38. Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., Lepore R., Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-W303. https://doi.org/10.1093/nar/gky427.
39. Wei C., Tang B., Zhang Y., Yang K. Oxidative refolding of recombinant prochymosin. Biochem. J. 1999;340(1):345-351. https://doi.org/10.1042/0264-6021:3400345.
40. Wei C., Zhang Y., Yang K. Chaperone-mediated refolding of recombinant prochymosin. J. Protein Chem. 2000;19(6):449-456. https://doi.org/10.1023/A:1026593113633.