Forecast for the zone of viticulture in European Russia under climate change
https://doi.org/10.18699/VJGB-22-33
Abstract
Climate warming has turned out to be a significant factor in viticulture and winemaking in all grape-growing areas of the world. Many countries consider the advance of viticulture to the north and to mountainous areas as a possible way to adapt to warming. The factors limiting the zone of viticulture in Russia have been identified by Soviet scientist F.F. Davitaya in 1948, and they are still relevant. They are the sum of active temperatures above 10 °C (ΣT10 > 2500 °C), mean of absolute minimum temperatures (Tmin > –35 °C), length of the frost-free period (Lff < 150 days), and hydrothermal coefficient (0.5 < HTC < 2.5). The values of these limiting factors in the present-day zone of commercial viticulture (ZCV) correspond to the ranges defined by F.F. Davitaya, with the exception of Tmin, which in the modern ZCV in European Russia is above –26 °C everywhere. The objective of this work was to assess the possibility of moving the boundaries of the ZCV to the north under the existing and predicted climate conditions in European Russia. The 1980–2019 daily data from 150 weather stations of the Federal Service for Hydrometeorology and Environmental Monitoring were used to calculate mean long-term values, trends and forecasts for 2050 for the ZCV limiting factors and locate the points lying in the range acceptable for viticulture. The QGIS program was applied to plot the points on the European Russia map and mark the terminal latitude. Versions with Tmin > –26 °C and Tmin > –35 °C were considered. On average for European Russia, in 1980–2019, there was an increase in ΣT10, Tmin, and Lff and a decrease in HTC. However, in the same period, Tmin showed a tendency toward decreasing at a number of points at latitudes lower than 55° N. The increase in heat supply during the growing season in European Russia implies a possibility of expanding the ZCV northward, beyond the present-day terminal latitude of 46.6° N, to 51.8° N under the existing conditions, and up to 60.7° N by 2050. In addition, even under the current conditions viticulture is possible in the area of Kaliningrad (54° N, 20° E). Using extra protective measures in winters not colder than –35 °C would make it possible to grow grapes at up to 53.3° N under the current conditions and at up to 60.7° N under the prognosticated ones. At the same time, a possible decrease in the minimum winter temperature at the south of European Russia will require additional protective measures in winter, while an increase in the aridity of the climate on the northwest coast of the Caspian Sea will reduce the area under non-irrigated vineyards.
About the Authors
L. Yu. NovikovaRussian Federation
St. Petersburg
P. V. Ozerski
Russian Federation
St. Petersburg
References
1. AgroAtlas. Interactive Agricultural Ecological Atlas of Russia and Neighboring Countries. Economic Plants and their Diseases, Pests and Weeds. 2008. [Electronic resource]. http://www.agroatlas.ru/en/index.html (Accessed August 20, 2021).
2. Barash S.I. History of Bad Harvests and Weather in Europe. Leningrad: Hydrometeoizdat Publ., 1989. (in Russian)
3. Bardaji I., Iraizoz B. Uneven responses to climate and market influencing the geography of high-quality wine production in Europe. Reg. Environ. Change. 2015;15:79-92. DOI 10.1007/s10113-014-0623-y.
4. Biasi R., Brunori E., Ferrara C., Salvati L. Assessing impacts of climate change on phenology and quality traits of Vitis vinifera L.: the contribution of local knowledge. Plants. 2019;8:121. DOI 10.3390/plants8050121.
5. Blanco-Ward D., Ribeiro A.C., Barreales D., Castro J., Verdial J., Feliciano M., Viceto C., Rocha A., Carlos C., Silveira C., Miranda A. Climate change potential effects on grapevine bioclimatic indices: a case study for the Portuguese demarcated Douro Region (Portugal). BIO Web of Conf. 2019;12:01013. DOI 10.1051/bioconf/20191201013.
6. Bucur G.M., Cojocaru G., Antoce A.O. The climate change influences and trends on the grapevine growing in Southern Romania: a long-term study, 42nd World Congress of Vine and Wine. BIO Web Conf. 2019;15:01008. DOI 10.1051/bioconf/20191501008.
7. Chistyakov P.N., Novikova L.Yu. Evaluation of the possibility of moving northward of the zone of grape cultivation in the ETR. In: Book of abstracts of the All-Russian sci. conf. with international participation “Contribution of Agrophysics to Solving Fundamental Problems of Agricultural Science”, St. Petersburg, October 1–2, 2020. St. Petersburg: FGBNU AFI, 2020;275-281. (in Russian)
8. Chrysargyris A., Xylia P., Litskas V., Stavrinides M., Heyman L., Demeestere K., Höfte M., Tzortzakis N. Assessing the impact of drought stress and soil cultivation in Chardonnay and Xynisteri grape cultivars. Agronomy. 2020;10:670. DOI 10.3390/agronomy10050670.
9. Davitaya F.F. Climatic Zones of Grapes in the USSR. Moscow: Pishchepromizdat Publ., 1948. (in Russian)
10. Fraga H., Santos J.A. Daily prediction of seasonal grapevine production in the Douro wine region based on favourable meteorological conditions. Aust. J. Grape Wine Res. 2017;23:296-304. DOI 10.1111/ajgw.12278.
11. Hall A., Mathews A.J., Holzapfel B. Potential effect of atmospheric warming on grapevine phenology and post-harvest heat accumulation across a range of climates. Int. J. Biometeorol. 2016;60(9):1405-1422. DOI 10.1007/s00484-016-1133-z.
12. Hannah L., Roehrdanz P.R., Ikegami M., Shepard A.V., Shaw M.R., Tabor G., Zhi L., Marquet P.A., Hijmans R.J. Climate change, wine, and conservation. Proc. Natl. Acad. Sci. USA. 2013;110(17):6907-6912. DOI 10.1073/pnas.1210127110.
13. Hewer M., Brunette M. Climate change impact assessment on grape and wine for Ontario, Canada’s appellations of origin. Reg. Environ. Change. 2020;20(3):86. DOI 10.1007/s10113-020-01673-y.
14. Houtan K.S., Tanaka K.R., Gagné T.O., Becker S.L. The geographic disparity of historical greenhouse emissions and projected climate change. Sci. Adv. 2021;7:eabe4342. DOI 10.1126/sciadv.abe4342.
15. Jägermeyr J., Müller C., Ruane A.C., Elliott J., Balkovic J., Castillo O., Faye B., Foster I., Folberth C., Franke J.A., Fuchs K., Guarin J.R., Heinke J., Hoogenboom G., Iizumi T., Jain A.K., Kelly D., Khabarov N., Lange S., Lin T.-S., Liu W., Mialyk O., Minoli S., Moyer E.J., Okada M., Phillips M., Porter C., Rabin S.S., Scheer C., Schneider J.M., Schyns J.F., Skalsky R., Smerald A., Stella T., Stephens H., Webber H., Zabel F., Rosenzweig C. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food. 2021;2:873-885. DOI 10.1038/s43016-021-00400-y.
16. Jones G. Climate, grapes, and wine: structure and suitability in a changing climate. Acta Hort. 2012;931:19-28. DOI 10.17660/ActaHortic.2012.931.1.
17. Khromov S.P., Petrosyants M.A. Meteorology and Climatology. Moscow: Moscow State University Publ., 2012. (in Russian)
18. Leewen C., Schultz H., de Cortazar-Atauri I.G., Duchêne E., Ollat N., Pieri P., Bois B., Goutouly J.-P., Quénol H., Touzard J.-M., Malheiro A.C., Bavaresco L., Delrot S. Why climate change will not dramatically decrease viticultural suitability in main wine-producing areas by 2050. Proc. Natl. Acad. Sci. USA. 2013;110(33):3051-3052. DOI 10.1073/pnas.1307927110.
19. Likhovskoi V.V., Zlenko V.A., Volinkin V.A., Oleinikov N.P., Polylyax A.A., Vasylyk I.A., Troshin L.P. Frost resistance of Crimean indigenous grape varieties and their hybrids. Nauchnyy Zhurnal KubGAU = Scientific Journal of KubSAU. 2016;117(03):681-694. (in Russian)
20. Lorenzo M.N., Taboada J.J., Lorenzo J.F., Ramos A.M. Influence of climate on grape production and wine quality in the Rías Baixas, north-western Spain. Reg. Environ. Change. 2013;13:887-896. DOI 10.1007/s10113-012-0387-1.
21. Losev A.P., Zhurina L.L. Agrometeorology. Moscow: KolosS Publ., 2004. (in Russian)
22. Mira de Orduña R. Climate change associated effects on grape and wine quality and production. Food Res. Int. 2010;43:1844-1855. DOI 10.1016/j.foodres.2010.05.001.
23. Mishchenko Z.A. Agro-climatology. Kiev: KNT Publ., 2009. (in Russian)
24. Mozell M.R., Thach L. The impact of climate change on the global wine industry: challenges & solutions. Wine Econ. Policy. 2014;3(2):81-89. DOI 10.1016/j.wep.2014.08.001.
25. Naumova L.G., Novikova L.Yu. Temperature analysis of interphase periods of grape varieties of the collection of the All-Russian Scientific Research Institute of Viticulture and Winemaking named after Ya.I. Potapenko. Vinodelie i Vinogradarstvo = Wine-making and Viticulture. 2015;5:46-50. (in Russian)
26. Nesbitt A., Dorling S., Lovett A. A suitability model for viticulture in England and Wales: opportunities for investment, sector growth and increased climate resilience. J. Land Use Sci. 2018;13(4):414-438. DOI 10.1080/1747423X.2018.1537312.
27. Novikova L.Yu., Lebedeva E.G. Certificate of state registration of the computer program ‘Program for predicting the reaction of grape varieties to climate change VITIS TIME SERIES’ No. 2019664805 dated November 13, 2019. (in Russian)
28. Novikova L.Yu., Naumova L.G. Regression analysis of winter hardiness of grape cultivars from Ya.I. Potapenko Don ampelographic collection. Magarach. Vinogradarstvo i Vinodelie = Magarach. Viticulture and Winemaking. 2018;4:59-61. (in Russian)
29. Novikova L.Yu., Naumova L.G. Structuring ampelographic collections by phenotypic characteristics and comparing the reaction of grape varieties to climate change. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(6):772-779. DOI 10.18699/VJ19.551.
30. Novikova L.Y., Naumona L.G. Dependence of fresh grapes and wine taste scores on the origin of varieties and weather conditions of the harvest year in the northern zone of industrial viticulture in Russia. Agronomy. 2020;10(10):1613. DOI 10.3390/agronomy10101613.
31. Peterson A.T., Papeş М., Soberón J. Mechanistic and correlative models of ecological niches. Eur. J. Ecol. 2015;1(2):28-38. DOI 10.1515/eje-2015-0014.
32. Pipan P., Hall A., Rogiers S.Y., Holzapfel B.P. Accuracy of interpolated versus in-vineyard sensor climate data for heat accumulation modelling of phenology. Front. Plant Sci. 2021;12:635299. DOI 10.3389/fpls.2021.635299.
33. Quénol H., Grosset M., Barbeau G., van Leeuwen C., Hofmann M., Foss C., Irimia L., Rochard J., Boulanger J.-P., Tissot C., Miranda C. Adaptation of viticulture to climate change: high resolution observation of adaptation scenario for viticulture: the ADVICLIM European project. Bull. de l’OIV. 2014;87(1001-1002-1003):395-406.
34. Roy P., Grenier P., Barriault E., Logan T., Blondlot A., Bourgeois G., Chaumont D. Probabilistic climate change scenarios for viticultural potential in Québec. Clim. Change. 2017;143(1):43-58. DOI 10.1007/s10584-017-1960-x.
35. Rybalko E.A. Climatic indices in viticulture. Magarach. Vinogradarstvo i Vinodelie = Magarach. Viticulture and Winemaking. 2020;22(1):26-28. DOI 10.35547/iM.2020.22.1.005. (in Russian)
36. Santos J.A., Fraga H., Malheiro A.C., Moutinho-Pereira J., Dinis L.-T., Correia C., Moriondo M., Leolini L., Dibari C., Costafreda-Aumedes S., Kartschall T., Menz C., Molitor D., Junk J., Beyer M., Schultz H.R. A review of the potential climate change impacts and adaptation options for European viticulture. Appl. Sci. 2020;10(9):3092. DOI 10.3390/app10093092.
37. Schultz H.R., Jones G.V. Climate induced historic and future changes in viticulture. J. Wine Res. 2010;21:137-145. DOI 10.1080/09571264.2010.530098.
38. Schultze S.R., Sabbatini P., Luo L. Effects of a warming trend on cool climate viticulture in Michigan, USA. SpringerPlus. 2016;5(1):1119. DOI 10.1186/s40064-016-2777-1.
39. Sirotenko O.D., Abashina E.V., Pavlova V.N. Dynamics of climate-conditioned changes in heat supply, moisture content and productivity of the agricultural zone of Russia. Trudy FGBU VNIISHM = Proceedings of the FSBI VNIISHM. 2013;38:41-53. (in Russian)
40. Sirotenko O.D., Pavlova V.N. The impact of climate change on agriculture. In: Development of Agricultural Meteorology in Russia. Obninsk, 2009;168-175. (in Russian)
41. Soberon J., Nakamura M. Niches and distributional areas: concepts, methods and assumptions. Proc. Natl. Acad. Sci. USA. 2009;106:19644-19650. DOI 10.1073/pnas.0901637106.
42. The Economics of Climate Change. The Stern Review. Nicholas Stern. Cabinet Office – HM Treasury, UK, 2006.
43. Tóth J.P., Végvári Z. Future of wine grape growing regions in Europe. Aust. J. Grape Wine Res. 2016;22:64-72. DOI 10.1111/ajgw.12168.
44. Vršič S., Vodovnik T. Reactions of grape varieties to climate changes in North East Slovenia. Plant Soil Environ. 2012;58(1):34-41. DOI 10.17221/352/2011-PSE.
45. Vyshkvarkova E., Rybalko E. Forecast of changes in air temperatures and heat indices in the Sevastopol region in the 21st century and their impacts on viticulture. Agronomy. 2021;11:954. DOI 10.3390/agronomy11050954.
46. Vyshkvarkova E., Rybalko E., Marchukova O., Baranova N. Assessment of the current and projected conditions of water availability in the Sevastopol region for grape growing. Agronomy. 2021;11(8):1665. DOI 10.3390/agronomy11081665.
47. White M.A., Diffenbaugh N.S., Jones G.V., Pal J.S., Giorgi F. Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc. Natl. Acad. Sci. USA. 2006;103:11217-11222. DOI 10.1073/pnas.0603230103.
48. Wójtowicz M., Wójtowicz A. the effect of climate change on linolenic fatty acid in oilseed rape. Agronomy. 2020;10(12):2003. DOI 10.3390/agronomy10122003.