1. Andika I.B., Weia Sh., Cao Ch., Salaipetha L., Kondo H., Suna L. Phytopathogenic fungus hosts a plant virus: a naturally occurring cross-kingdom viral infection. Proc. Natl. Acad. Sci. USA. 2017;114(46):12267-12272. https://doi.org/10.1073/pnas.1714916114.
2. Behjatnia A., Dry I., Krake L., Condé B.D., Connelly M.I., Randles J., Rezaian M.A. New potato spindle tuber viroid and tomato leaf curl geminivirus strains from a wild Solanum sp. Phytopathology. 1996;86:880-886. https://doi.org/10.1094/Phyto-86-880.
3. Bhat Al.I., Rao G.P. Characterization of Plant Viruses. Methods and Protocols. Humana, New York: Springer Science+Business Media, 2020. https://doi.org/10.1007/978-1-0716-0334-5_1.
4. Black W., Mastenbroek C., Mills W.R., Peterson L.C. A proposal for an international nomenclature of races of Phytophthora infestans and of genes controlling immunity in Solanum demissum derivatives. Euphytica. 1953;2:173-178. https://doi.org/10.1007/BF00053724.
5. Brown D.J.F., Ploeg A.T., Robinson D.J. A review of reported associations between Trichodorus and Paratrichodorus species (Nematoda : Trichodoridae) and tobraviruses with a description of laboratory methods for examining virus transmission by trichodorids. Rev. Nématol. 1989;12(3):235-241.
6. Bulletin OEPP/EPPO Bulletin. 2011. Potato spindle tuber viroid on potato. 2011;41(3):394-399.
7. Cai Q., Qiao L., Wang M., He B., Lin F.M., Palmquist J., Huang S.D., Jin H. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science. 2018;360:1126-1129. https://doi.org/10.1126/science.aar4142.
8. Cottilli P., Belda-Palazón B., Adkar-Purushothama C.R., Perreault J.-P., Schleiff E., Rodrigo I., Ferrando A., Lisón P. Citrus exocortis viroid causes ribosomal stress in tomato plants. Nucleic Acids Res. 2019;47(16):8649-8661. https://doi.org/10.1093/nar/gkz679.
9. Diener T.O., Raymer W.B. Potato spindle tuber virus: a plant virus with properties of a free nucleic acid. II. Characterization and partial purification. Virology. 1969;37(3):351-366. https://doi.org/10.1016/0042-6822(69)90219-0.
10. Fernow K.H., Peterson L.C., Plaisted R.L. Spindle tuber virus in seeds and pollen of infected plants. Am. Potato J. 1970;47:75-80. https://doi.org/10.1007/BF02864807.
11. Gross H.J., Domdey H., Lossow C., Jank P.R.M., Alberty H., Sänger H.L. Nucleotide sequence and secondary structure of potato spindle tuber viroid. Nature. 1978;273:203-208. https://doi.org/10.1038/273203a0.
12. Han L., Luan Y.-S. Horizontal transfer of small RNAs to and from plants. Front. Plant Sci. 2015;6:1113. https://doi.org/10.3389/fpls.2015.01113.
13. Hou Y., Zhai Y., Feng L., Karimi H.Z., Rutter B.D., Zeng L., Choi D.S., Zhang B., Gu W., Chen X., Ye W., Innes R.W., Zhai J., Ma W. A Phytophthora effector suppresses trans-kingdom RNAi to promote disease susceptibility. Cell Host Microbe. 2019;25(1):153-165.e5. https://doi.org/10.1016/j.chom.2018.11.007.
14. Jahan S.N., Åsman A.K.M., Corcoran P., Fogelqvist J., Vetukuri R.R., Dixelius C. Plant-mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans. J. Exp. Bot. 2015;66:2785-2794. https://doi.org/10.1093/jxb/erv094.
15. Kastalyeva T.B., Mozhaeva K.A., Pisetskaya N.F., Romanova S.A., Trofimets L.N. The potato spindle tuber viroid and bringing potato into a healthy state. Vestnik RASKHN = Herald of the Russian Academy of Agricultural Sciences. 1992;3:22-24. (in Russian)
16. Khavkin E.E. Potato late blight as a model of pathogen-host plant coevolution. Russ. J. Plant Physiol. 2015;62(3):408-419. https://doi.org/10.1134/S1021443715030103.
17. Kryczyński S., Paduch-Cichal E.L., Skrzeczkowski J. Transmission of three viroids through seed and pollen of tomato plants. J. Phytopathol. 1988;121(1):51-57. https://doi.org/10.1111/j.1439-0434.1988.tb00952.x.
18. Leesutthiphonchai W., Vu A.L., Ah-Fong A.M.V., Judelson H.S. How does Phytophthora infestans evade control efforts? Modern insight into the late blight disease. Phytopathology. 2018;108(8):916-924. https://doi.org/10.1094/PHYTO-04-18-0130-IA.
19. Mackie A.E., Rodoni B.C., Barbetti M.J., McKirdy S.J., Jones R.A.C. Potato spindle tuber viroid: alternative host reservoirs and strain found in a remote subtropical irrigation area. Eur. J. Plant Pathol. 2016;145(2):433-446. https://doi.org/10.1007/s10658-016-0857-2.
20. Manzer F.E., Merriam D. Field transmission of potato spindle tuber virus and virus X by cultivating and hilling equipment. Am. Potato J. 1961;38:346-352.
21. Mascia T., Vučurović A., Minutillo S.A., Nigro F., Labarile R., Savoia M.A., Palukaitis P., Gallitelli D. Infection of Colletotrichum acutatum and Phytophthora infestans by taxonomically different plant viruses. Eur. J. Plant Pathol. 2019;153(4):1001-1017. https://doi.org/10.1007/s10658-018-01615-9.
22. Matsushita Y., Yanagisawa H. Distribution of Tomato planta macho viroid in germinating pollen and transmitting tract. Virus Genes. 2018;54:124-129. https://doi.org/10.1007/s11262-017-1510-7.
23. Matsushita Y., Yanagisawa H., Khiutti A., Mironenko N., Ohto Y., Afanasenko O. Genetic diversity and pathogenicity of potato spindle tuber viroid and chrysanthemum stunt viroid isolates in Russia. Eur. J. Plant Pathol. 2021;161:529-542. https://doi.org/10.1007/s10658-021-02339-z.
24. Mazumdar P., Singh P., Kethiravan D., Ramathani I., Ramakrishnan N. Late blight in tomato: insights into the pathogenesis of the aggressive pathogen Phytophthora infestans and future research priorities. Planta. 2021;253(6):119. https://doi.org/10.1007/s00425-021-03636-x.
25. Medina M.V., Platt H.W. Comparison of different culture media on the mycelial growth, sporangia and oospore production of Phytophthora infestans. Am. J. Potato Res. 1999;76:121-125. https://doi.org/10.1007/BF02853576.
26. Mertelik J., Kloudova K., Cervena G., Necekalova J., Mikulkova H., Levkanicova Z., Dedic P., Ptacek J. First report of Potato spindle tuber viroid (PSTVd) in Brugmansia spp., Solanum jasminoides, Solanum muricatum and Petunia spp. in the Czech Republic. Plant Pathol. 2010;59(2):392. https://doi.org/10.1111/j.1365-3059.2009.02115.x.
27. Owens R.A., Khurana S.M.P., Smith D.R., Singh M.N., Garg I.D. A new mild strain of potato spindle tuber viroid isolated from wild Solanum spp. in India. Plant Dis. 1992;76(5):527-529. https://doi.org/10.1094/PD-76-0527.
28. Pearson M.N., Beever R.E., Boine B., Arthur K. Mycoviruses of filamentous fungi and their relevance to plant pathology. Mol. Plant Pathol. 2009;10(1):115-128. https://doi.org/10.1111/j.1364-3703.2008.00503.x.
29. Pfannenstiel M.A., Slack S.A. Response of potato cultivars to infection by the potato spindle tuber viroid. Phytopathology. 1980;70(9):922-926. https://doi.org/10.1094/Phyto-70-922.
30. Puchta H., Herold T., Verhoeven K., Roenhorst A., Ramm K., SchmidtPuchta W., Sänger H.L. A new strain of potato spindle tuber viroid (PSTVd-N) exhibits major sequence differences as compared to all other PSTVd strains sequenced so far. Plant Mol. Biol. 1990;15(3):509-511. https://doi.org/10.1007/BF00019169.
31. Querci M., Owens R.A., Bartolini I., Lazarte V., Salazar L.F. Evidence for heterologous encapsidation of potato spindle tuber viroid in particles of potato leafroll virus. J. Gen. Virol. 1997;78(Pt.6):1207-1211. https://doi.org/10.1099/0022-1317-78-6-1207.
32. Ristaino J.B., Madritch M., Trout C.L., Parra G. PCR amplification of ribosomal DNA for species identification in the plant pathogen genus Phytophthora. Appl. Environ. Microbiol. 1998;64(3):948-954. https://doi.org/10.1128/AEM.64.3.948-954.
33. Salazar L.F., Querci M., Bartolini I., Lazarte V. Aphid transmission of potato spindle tuber viroid assisted by potato leafroll virus. Fitopatologia. 1995;30(1):56-58.
34. Serra P., Carbonell A., Navarro B., Gago-Zachert S., Li S., Di Serio F., Flores R. Symptomatic plant viroid infections in phytopathogenic fungi: a request for a critical reassessment. Proc. Natl. Acad. Sci. USA. 2020;117(19):10126-10128. https://doi.org/10.1073/pnas.1922249117.
35. Singh R.P. Seed transmission of potato spindle tuber virus in tomato and potato. Am. Potato J. 1970;47:225-227. https://doi.org/10.1007/BF02872303.
36. Singh R.P. Experimental host range of the potato spindle tuber ‘virus’. Am. Potato J. 1973;50:111-123. https://doi.org/10.1007/BF02857207.
37. Singh R.P., Boucher A., Somerville T.H. Detection of Potato spindle tuber viroid in the pollen and various parts of potato plant pollinated with viroid-infected pollen. Plant Dis. 1992;76:951-953.
38. Singh S., Awasthi L.P., Jangre A., Nirmalkar V.K. Chapter 22 - Transmission of plant viruses through soil-inhabiting nematode vectors. In: Awasthi L.P. (Ed.) Applied Plant Virology. Acad. Press, 2020;291-300. https://doi.org/10.1016/B978-0-12-818654-1.00022-0.
39. Sutela S., Poimala A., Vainio E.J. Viruses of fungi and oomycetes in the soil environment. FEMS Microbiol. Ecol. 2019;95(9):fiz119. https://doi.org/10.1093/femsec/fiz119.
40. Syller J., Marczewski W., Pawłowicz J. Transmission by aphids of potato spindle tuber viroid encapsidated by potato leafroll luteovirus particles. Eur. J. Plant Pathol. 1997;103:285-289. https://doi.org/10.1023/A:1008648822190.
41. Takeda R., Ding B. Viroid intercellular trafficking: RNA motifs, cellular factors and broad impacts. Viruses. 2009;1(2):210-221. https://doi.org/10.3390/v1020210.
42. Verhoeven J.T.J., Roenhorst J.W. High stability of original predominant pospiviroid genotypes upon mechanical inoculation from ornamentals to potato and tomato. Arch. Virol. 2010;155:269-274. https://doi.org/10.1007/s00705-009-0572-9.
43. Vetukuri R.R., Åsman A.K.M., Tellgren-Roth C., Jahan S.N., Reimegård J., Fogelqvist J., Savenkov E., Söderbom F., Avrova A.O., Whisson S.C., Dixelius C. Evidence for small RNAs homologous to effector-encoding genes and transposable elements in the oomycete Phytophthora infestans. PLoS One. 2012;7(12):e51399. https://doi.org/10.1371/journal.pone.0051399.
44. Wang M., Dean R.A. Movement of small RNAs in and between plants and fungi. Mol. Plant Pathol. 2020;21:589-601. https://doi.org/10.1111/mpp.12911.
45. Wei Sh., Bian R., Andika I.B., Niu E., Liu Q., Kondo H., Yang L., Zhou H., Pang T., Lian Z., Liu X., Wu Y., Sun L. Symptomatic plant viroid infections in phytopathogenic fungi. Proc. Natl. Acad. Sci. USA. 2019;116(26):13042-13050. https://doi.org/10.1073/pnas.1900762116.
46. Wei S., Bian R., Andika I.B., Niu E., Liu Q., Kondo H., Yang L., Zhou H., Pang T., Lian Z., Liu X., Wu Y., Sun L. Nucleotide substitutions in plant viroid genomes that multiply in phytopathogenic fungi. Proc. Natl. Acad. Sci. USA. 2020;117(19):10129-10130. https://doi.org/10.1073/pnas.2001670117.
47. White T.J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J. (Eds.) PCR Protocols, a Guide to Methods and Applications. Acad. Press, 1990;315-322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1.
48. Yanagisawa H., Sano T., Hase S., Matsushita Y. Influence of the terminal left domain on horizontal and vertical transmissions of tomato planta macho viroid and potato spindle tuber viroid through pollen. Virology. 2019;526(2):22-31. https://doi.org/10.1016/j.virol.2018.09.021.
49. Zeng J., Gupta V.K., Jiang Y., Yang B., Gong L., Zhu H. Crosskingdom small RNAs among animals, plants and microbes. Cells. 2019;8(4):371. https://doi.org/10.3390/cells8040371.