Молекулярно-генетические особенности патогенеза идиопатического легочного фиброза
https://doi.org/10.18699/VJGB-22-37
Аннотация
Идиопатический легочный фиброз – тяжелая прогрессирующая интерстициальная болезнь л ких с распространенностью 2–29 случаев на 100 000 человек населения в мире. Значимым фактором риска заболевания является старение, механизмы развития которого задействованы в патогенезе идиопатического легочного фиброза. К ним относятся истощение теломер, геномная нестабильность, дисфункция митохондрий и потеря протеостаза. Важную роль в развитии идиопатического легочного фиброза играют также эпителиально-мезенхимальный переход, активация TGF-β и снижение экспрессии сиртуина SIRT7. Молекулярно-генетические исследования показали, что в патогенезе идиопатического легочного фиброза имеют значение мутации и полиморфизмы в генах муцина (MUC5B), в генах, ответственных за целостность теломер (TERC, TERT, TINF2, DKC1, RTEL1, PARN), генов сурфактанта (SFTPC, SFTPCA, SFTPA2, ABCA3, SP-A2) и иммунной системы (IL1RN, TOLLIP), а также гаплотипы генов HLA (DRB1*15:01, DQB1*06:02). Перспективно изучение влияния на развитие болезни обратимых эпигенетических факторов, которые могут быть скорректированы таргетной терапией. Среди них с идиопатическим легочным фиброзом ассоциированы специфические микроРНК и длинные некодирующие РНК. Сделано предположение, что драйверным событием для идиопатического легочного фиброза служит дисрегуляция транспозонов, которые являются ключевыми источниками некодирующих РНК и влияют на механизмы старения. Это обусловлено тем, что при патологической активации транспозонов происходит нарушение регуляции генов, в эпигенетическом управлении которых участвуют происходящие от этих транспозонов микроРНК (в связи с комплементарностью нуклеотидных последовательностей). Анализ базы данных MDTE (miRNAs derived from Transposable Elements) позволил выявить 12 различных микроРНК, гены которых в эволюции возникли от транспозонов и ассоциированы с идиопатическим легочным фиброзом (miR-31, miR-302, miR-326, miR-335, miR-340, miR-374, miR-487, miR-493, miR-495, miR-630, miR-708, miR-1343). Описаны взаимосвязи мобильных элементов с TGF-β, сиртуинами и теломерами, дисфункция которых вовлечена в патогенез идиопатического легочного фиброза. Новые данные об эпигенетических механизмах развития патологии могут стать основой для улучшения результатов таргетной терапии болезни с использованием в качестве мишени некодирующих РНК.
Ключевые слова
Список литературы
1. Allam J.S., Limper A.H. Idiopathic pulmonary fibrosis: is it a familial disease. Curr. Opin. Pulm. Med. 2006;12:312-317. https://doi.org/10.1097/01.mcp.0000239546.24831.61.
2. Allen R.J., Guillen-Guio B., Oldham J.M., Ma S.F., Dressen A., Paynton M.L., Kraven L.M., Obeidat M., Li X., Ng M., Braybrooke R., Molina M., Hobbs B.D., Putman R.K., Flores C., Noth I., Jenkins R.G., Wain L.V. Genome-wide association study of susceptibility to idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care. Med. 2020;201(5):564-574. https://doi.org/10.1164/rccm.201905-1017OC.
3. Arkhipova I.R., Yushenova I.A., Rodriguez F. Giant reverse transcriptase-encoding transposable elements at telomeres. Mol. Biol. Evol. 2017;34(9):2245-2257. https://doi.org/10.1093/molbev/msx159.
4. Bagnato G., Roberts W.N., Roman J., Gangemi S. A systematic review of overlapping microRNA patterns in systemic sclerosis and idiopathic pulmonary fibrosis. Eur. Respir. Rev. 2017;26:160125. https://doi.org/10.1183/16000617.0125-2016.
5. Bondarev I.E., Khavinson V.Kh. Suppression of alternative telomere lengthening in cancer cells with reverse transcriptase inhibitors. Adv. Gerontol. 2016;6(4):272-274. https://doi.org/10.1134/S2079057016040020.
6. Casacuberta E. Drosophila: retrotransposons making up telomeres. Viruses. 2017;9(7):192. https://doi.org/10.3390/v9070192.
7. Chioma O.S., Drake W.P. Role of microbial agents in pulmonary fibrosis. Yale J. Biol. Med. 2017;90(2):219-227.
8. Chuong E.B. The placenta goes viral: retroviruses control gene expression in pregnancy. PLoS Biol. 2018;16(10):e3000028. https://doi.org/10.1371/journal.pbio.3000028.
9. De Cecco M., Criscione S.W., Peterson A.L., Neretti N., Sediby J.M., Kreiling J.A. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging (Albany NY). 2013;5:867-883. https://doi.org/10.18632/aging.100621.
10. Dileepan M., Sarver A.E., Rao S.P., Panettieri R.A., Jr., Subramanian S., Kannan M.S. MicroRNA mediated chemokine responses in human airway smooth muscle cells. PLoS One. 2016;11(3):e0150842. https://doi.org/10.1371/journal.pone.0150842.
11. Fernandez B.A., Fox G., Bhatia R., Sala E., Noble B., Nash D., Fernandez D., Duguid N., Dohey A., Kamel F., Edwards L., Mahoney K., Stuckless S., Parfrey P.S., Woods M.O. A Newfoundland cohort of familial and sporadic idiopathic pulmonary fibrosis patients: clinical and genetic features. Respir. Res. 2012;13:64. https://doi.org/10.1186/1465-9921-13-64.
12. Filshtein T.J., Mackenzie C.O., Dale M.D., Dela-Cruz P.S., Ernst D.M., Frankenberger E.A., He C., Heath K.L., Jones A.S., Jones D.K., King E.R., Maher M.B., Mitchell T.J., Morgan R.R., Sirobhushanam S., Halkyard S.D., Tiwari K.B., Rubin D.A., Borchert G.M., Larson E.D. Orbid: Origin-based identification of microRNA targets. Mob. Genet. Elements. 2012;2(4):184-192. https://doi.org/10.4161/mge.21617.
13. Fingerlin T.E., Zhang W., Yang I.V., Ainsworth H.C., Russell P.H., Blumhagen R.Z., Schwarz M.I., Brown K.K., Steele M.P., Loyd J.E., Cosgrove G.P., Lynch D.A., Growhong S., Markin C.R., Beckman K.B., Langefeld C.D., Schwartz D.A. Genome-wide imputation study identifies novel HLA locus for pulmonary fibrosis and potential role for auto-immunity in fibrotic idiopathic interstitial pneumonia. BMC Genet. 2016;17(1):74. https://doi.org/10.1186/s12863-016-0377-2.
14. Garavis M., Gonzalez C., Villasante A. On the origin of the eukaryotic chromosome: the role of noncanonical DNA structures in telomere evolution. Genome Biol. Evol. 2013;5:1142-1150. https://doi.org/10.1093/gbe/evt079.
15. Ge L., Habiel D.M., Hansbro P.M., Kim R.Y., Gharib S.A., Edelman J.D., Konigshoff M., Parimon T., Brauer R., Huang Y., Allen J., Jiang D., Kurkciyan A.A., Mizuno T., Stripp B.R., Noble P.W., Hogaboam C.M., Chen P. miR-323a-3p regulates lung fibrosis by targeting multiple profibrotic pathways. JCI Insight. 2016;1(20):e90301. https://doi.org/10.1172/jci.insight.90301.
16. Gochuico B.R., Huizing M., Golas G.A., Scher C.D., Tsokos M., Denver S.D., Frei-Jones M.J., Gahl W.A. Interstitial lung disease and pulmonary fibrosis in Hermansky-Pudlak syndrome type 2, an adaptor protein-3 complex disease. Mol. Med. 2012;18(1):56-64. https://doi.org/10.2119/molmed.2011.00198.
17. Gu T.J., Yi X., Zhao X.W., Zhao Y., Yin J.Q. Alu-directed transcriptional regulation of some novel miRNAs. BMC Genomics. 2009;10:563.
18. Gulati S., Thannickal V.J. The aging lung and idiopathic pulmonary fibrosis. Am. J. Med. Sci. 2019;357:384-389. https://doi.org/10.1016/j.amjms.2019.02.008.
19. Hao X., Du Y., Qian L., Li D., Liu X. Upregulation of long noncoding RNA AP003419.16 predicts high risk of aging-associated idiopathic pulmonary fibrosis. Mol. Med. Rep. 2017;16(6):8085-8091. https://doi.org/10.3892/mmr.2017.7607.
20. Hassan F., Nuovo G.J., Crawford M., Boyaka P.N., Kirkby S., NanaSinkam S.P., Cormet-Boyaka E. MiR-101 and miR-144 regulate the expression of the CFTR chloride channel in the lung. PLoS One. 2012;7(11):e50837. https://doi.org/10.1371/journal.pone.0050837.
21. He S., Sun S., Lu J., Chen L., Mei X., Li L., Zeng Z., Zhong M., Xie L. The effects of the miR-21/SMAD7/TGF-β pathway on Th17 cell differentiation in COPD. Sci. Rep. 2021;11:6338. https://doi.org/10.1038/s41598-021-85637-0.
22. Hodgson U., Laitinen T., Tukiainen P. Nationwide prevalence of sporadic and familial idiopathic pulmonary fibrosis: evidence of founder effect among multiplex families in Finland. Thorax. 2002;57(4): 338-342. https://doi.org/10.1136/thorax.57.4.338.
23. Honson D.D., Macfarlan T.S. A lncRNA-like role for LINE1s in development. Dev. Cell. 2018;46:132-134. https://doi.org/10.1016/j.devcel.2018.06.022.
24. Huang C., Xiao X., Yang Y., Mishra A., Liang Y., Zeng X., Yang X., Xu D., Blackburn M.R., Henke C.A., Liu L. MicroRNA-101 attenuates pulmonary fibrosis by inhibiting fibroblast proliferation and activation. J. Biol. Chem. 2017;292:16420-16439. https://doi.org/10.1074/jbc.M117.805747.
25. Huang L., Huang L., Li Z., Wei Q. Molecular mechanisms and therapeutic potential of miR-493 in cancer. Crit. Rev. Eukaryot. Gene Expr. 2019;29(6):521-528. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2019030056.
26. Johnson R., Guigo R. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA. 2014;20:959-976. https://doi.org/10.1261/rna.044560.114.
27. Kang H. Role of microRNAs in TGF-β signaling pathway-mediated pulmonary fibrosis. Int. J. Mol. Sci. 2017;18(12):2527. https://doi.org/10.3390/ijms18122527.
28. Kara M., Kirkil G., Kalemci S. Differential expression of microRNAs in chronic obstructive pulmonary disease. Adv. Clin. Exp. Med. 2016;25(1):21-26. https://doi.org/10.17219/acem/28343.
29. Karner J., Wawrzyniak M., Tankov S., Runnel T., Aints A., Kisand K., Altraja A., Kingo K., Akdis C.A., Akdis M., Rebane A. Increased microRNA-323-3p in IL-22/IL-17-producing T cells and asthma: a role in the regulation of the TGF-β pathway and IL-22 production. Allergy. 2017;72(1):55-65. https://doi.org/10.1111/all.12907.
30. Kelley D., Rinn J. Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol. 2012;13(11):R107. https://doi.org/10.1186/gb-2012-13-11-r107.
31. Korthagen N.M., van Moorsel C.H., Kazemier K.M., Ruven H.J., Grutters J.C. IL1RN genetic variations and risk of IPF: a meta-analysis and mRNA expression study. Immunogenetics. 2012;64:371-377. https://doi.org/10.1007/s00251-012-0604-6.
32. Lawson W.E., Grant S.W., Ambrosini V., Womble K.E., Dawson E.P., Lane K.B., Markin C., Renzoni E., Lympany P., Thomas A.Q., Roldan J., Scott T.A., Blackwell T.S., Phillips J.A., Loyd J.E., du Bois R.M. Genetic mutations in surfactant protein C are a rare cause of sporadic cases of IPF. Thorax. 2004;59(11):977-980. https://doi.org/10.1136/thx.2004.026336.
33. Lee M.G., Lee Y.H. A meta-analysis examining the association between the MUC5B rs35705950 T/G polymorphism and susceptibility to idiopathic pulmonary fibrosis. Inflamm. Res. 2015;64(6):463-470. https://doi.org/10.1007/s00011-015-0829-6.
34. Lescale C., Deriano L. The RAG recombinase: beyond breaking. Mech. Ageing Dev. 2016;16:30263-30269. https://doi.org/10.1016/j.mad.2016.11.003.
35. Li J., Pan C., Tang C., Tan W., Zhang W., Guan J. miR-184 targets TP63 to block idiopathic pulmonary fibrosis by inhibiting proliferation and epithelial-mesenchymal transition of airway epithelial cells. Lab. Invest. 2021;101(2):142-154. https://doi.org/10.1038/s41374-020-00487-0.
36. Li R., Wang Y., Song X., Sun W., Zhang J., Liu Y., Li H., Meng C., Zhang J., Zheng Q., Lv C. Potential regulatory role of circular RNA in idiopathic pulmonary fibrosis. Int. J. Mol. Med. 2018;42(6):3256-3268. https://doi.org/10.3892/ijmm.2018.3892.
37. Li R., Xu F., Wu X., Ji S., Xia R. CUL1-mediated organelle fission pathway inhibits the development of chronic obstructive pulmonary disease. Comput. Math. Methods Med. 2020;2020:5390107. https://doi.org/10.1155/2020/5390107.
38. Li W., Wang X., Sun S., An H. Long non-coding RNA colorectal neoplasia differentially expressed correlates negatively with miR-33a and miR-495 and positively with inflammatory cytokines in asthmatic children. Clin. Respir. J. 2021;15(11):1175-1184. https://doi.org/10.1111/crj.13424.
39. Liu B., Li R., Zhang J., Meng C., Zhang J., Song X., Lv C. MicroRNA-708-3p as a potential therapeutic target via the ADAM17-GATA/STAT3 axis in idiopathic pulmonary fibrosis. Exp. Mol. Med. 2018;50(3):e465. https://doi.org/10.1038/emm.2017.311.
40. Liu G., Friggeri A., Yang Y., Milosevic J., Ding Q., Thannickal V.J., Kaminski N., Abraham E. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J. Exp. Med. 2010;207(8):1589-1597. https://doi.org/10.1084/jem.20100035.
41. Liu H.C., Liao Y., Liu C.Q. miR-487b mitigates allergic rhinitis through inhibition of the IL-33/ST2 signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2018;22(23):8076-8083. https://doi.org/10.26355/eurrev_201812_16497.
42. Liu J., Li C., Zhang C., Zhang Z. LncRNA-CASC7 enhances corticosteroid sensitivity via inhibiting the PI3K/AKT signaling pathway by targeting miR-21 in severe asthma. Pulmonology. 2020;26(1):18-26. https://doi.org/10.1016/j.pulmoe.2019.07.001.
43. Liu X., Gao S., Xu H. LncRNACAT29 inhibits pulmonary fibrosis via the TGF-β1-regulated RASAL1/ERK1/2 signal pathway. Mol. Med. Rep. 2018;17(6):7781-7788. https://doi.org/10.3892/mmr.2018.8807.
44. Lu X., Sachs F., Ramsay L., Jacques P.-E., Göke J., Bourque G., Ng H.-H. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol. 2014;21:423-425. https://doi.org/10.1038/nsmb.2799.
45. Lux A., Beil C., Majety M., Barron S., Gallione C.J., Kuhn H.M., Gerg J.N., Kioschis P., Marchuk D.A., Hafner M. Human retroviral gag- and gag-pol-like proteins interact with the transforming growth factor-beta receptor activin receptor-like kinase 1. J. Biol. Chem. 2005;280(9):8482-8493. https://doi.org/10.1074/jbc.M409197200.
46. Mahmood W., Erichsen L., Ott P., Schulz W., Fischer J.C., ArauzoBravo M.J., Bendhack M.L., Hassan M., Santourlidis S. Agingassociated distinctive DNA methylation changes of LINE-1 retrotransposons in pure cell-free DNA from human blood. Sci. Rep. 2020;10(1):22127. https://doi.org/10.1038/s41598-020-79126-z.
47. Martinez-Nunez R., Bondanese V.P., Louafi F., Francisco-Garcia A.S., Rupani H., Bedke N., Holgate S., Howerth P.H., Davies D.E., Sanchez-Elsner T. A microRNA network dysregulated in asthma controls IL-6 production in bronchial epithelial cells. PLoS One. 2014;9(10):e111659. https://doi.org/10.1371/journal.pone.0111659.
48. Mathai S.K., Yang I.V., Schwarz M.I., Schwartz D.A. Incorporating genetics into the identification and treatment of idiopathic pulmonary fibrosis. BMC Med. 2015;13:191. https://doi.org/10.1186/s12916-015-0434-0.
49. McKusick V.A., Fisher A.M. Congential cystic disease of the lung with progressive pulmonary fibrosis and carcinomatosis. Ann. Intern. Med. 1958;48:774-790. https://doi.org/10.7326/0003-4819-48-4-774.
50. Methot D.B., Leblanc E., Lacasse Y. Meta-analysis of gastroesophageal reflux disease and idiopathic pulmonary fibrosis. Chest. 2019;155(1):33-43. https://doi.org/10.1016/j.chest.2018.07.038.
51. Mustafin R.N. Aging and interrelation of telomeres with transposable elements. Adv. Gerontol. 2019;32(5):693-701. (in Russian).
52. Mustafin R.N., Khusnutdinova E.K. The role of transposable elements in the ecological morphogenesis under the influence of stress. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(4):380-389. https://doi.org/10.18699/VJ19.506.
53. Nevalainen T., Autio A., Mishra B.H., Marttila S., Jyha M., Hurme M. Aging-associated pattern in the expression of human endogenous retroviruses. PLoS One. 2018;13(12):e0207407. https://doi.org/10.1371/journal.pone.0207407.
54. Nikitin D., Penzar D., Garazha A., Sorokin M., Tkachev V., Borisov N., Pltorak V., Buzdin A.A. Profiling of human molecular pathways affected by retrotransposons at the level of regulation by transcription factor proteins. Front. Immunol. 2018;9:30. https://doi.org/10.3389/fimmu.2018.00030.
55. Noth I., Zhang Y., Ma S.F., Flores C., Barbes M., Huang Y., Broderick S.M., Wade M.S., Kaminski N., Garcia J.G.N. Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study. Lancet Respir Med. 2013;1(4):309-317. https://doi.org/10.1016/S2213-2600(13)70045-6.
56. Ong J., van den Berg A., Faiz A., Boudewijn I.M., Timens W., Vermeulen C.J., Oliver B.G., Kok K., Terpstra M.M., van den Berge M., Brandsma C.A., Kluiver J. Current smoking is associated with decreased expression of miR-335-5p in parenchymal lung fibroblasts. Int. J. Mol. Sci. 2019;20(20):5176. https://doi.org/10.3390/ijms20205176.
57. Piriyapongsa J., Marino-Ramirez L., Jordan I.K. Origin and evolution of human microRNAs from transposable elements. Genetics. 2007;176(2):1323-1337. https://doi.org/10.1534/genetics.107.072553.
58. Qin S., Jin P., Zhou X., Chen L., Ma F. The role of transposable elements in the origin and evolution of microRNAs in human. PLoS One. 2015;10(6):e0131365. https://doi.org/10.1371/journal.pone.0131365.
59. Raghu G., Weycker D., Edelsberg J., Bradford W.Z., Oster G. Incidence and prevalence of idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care. Med. 2006;174:810-816. https://doi.org/10.1164/rccm.200602-163OC.
60. Ruocco F.D., Basso V., Rivoire M., Mehlen P., Ambati J., De Falco S., Tarallo V. Alu RNA accumulation induces epithelial-to-mesenchymal transition by modulating miR-566 and is associated with cancer progression. Oncogene. 2018;37(5):627-637. https://doi.org/10.1038/onc.2017.369.
61. Seibold M.A., Wise A., Speer M., Steele M., Brown K., Lloyd J.E., Fingerlin T.E., Garantziotis S., Herron A., Slifer S.H., Schwartaz D.A. A common MUC5B promoter polymorphism and pulmonary fibrosis. N. Engl. J. Med. 2011;364:1503-1512. https://doi.org/10.1056/NEJMoa1013660.
62. Sgalla G., Iovene B., Clavello M., Ori M., Varone F., Richeldi L. Idiopathic pulmonary fibrosis: pathogenesis and management. Respir. Res. 2018;19(1):32. https://doi.org/10.1186/s12931-018-0730-2.
63. Sheng G., Chen P., Wei Y., Yue H., Chu J., Zhao J., Wang Y., Zhang W., Zhang H.L. Viral infection increases the risk of idiopathic pulmonary fibrosis: a meta-analysis. Chest. 2020;157(5):1175-1187. https://doi.org/10.1016/j.chest.2019.10.032.
64. Shi Z., Sun Y., Wang K., Jia J., Yang J., Li Y. Effects of miR-26a/miR-146a/miR-31 on airway inflammation of asthma mice and asthma children. Eur. Rev. Med. Pharmacol. Sci. 2019;23(12):5432-5440. https://doi.org/10.26355/eurrev_201906_18212.
65. Song X., Xu P., Meng C., Song C., Blackwell T.S., Li R., Li H., Zhang J., Lv C. LncITPF promotes pulmonary fibrosis by targeting hnRNP-L depending on its host gene ITGBL1. Mol. Ther. 2019;27(2):380-393. https://doi.org/10.1016/j.ymthe.2018.08.026.
66. Spagnolo P., Cottin V. Genetics of idiopathic pulmonary fibrosis: from mechanistic pathways to personalized medicine. J. Med. Genet. 2017;54:93-99. https://doi.org/10.1136/jmedgenet-2016-103973.
67. Stuart B.D., Choi J., Zaidi S., Xing C., Holohan B., Chen R., Choi M., Dharwadkar P., Torres F., Girod C.E., Weissler J., Lifton R.P., Garcia C.K. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat. Genet. 2015;47:512-517. https://doi.org/10.1038/ng.3278.
68. Tasena H., Faiz A., Timens W., Noordhoek J., Hylkema M.N., Gosens R., Hiemstra P.S., Spira A., Postma D.S., Tew G.W., Grimbaldeston M.A., van den Berge M., Heijink I.H., Brandsma C. MicroRNA-mRNA regulatory networks underlying chronic mucus hypersecretion in COPD. Eur. Respir. J. 2018;52(3):1701556. https://doi.org/10.1183/13993003.01556-2017.
69. Tempel S., Pollet N., Tahi F. NcRNAclassifier: a tool for detection and classification of transposable element sequences in RNA hairpins. BMC Bioinformatics. 2012;13:246. https://doi.org/10.1186/1471-2105-13-246.
70. Thomas A.Q., Lane K., Phillips J., Prince M., Markin C., Speer M., Schwartz D.A., Gaddipati R., Marney A., Johnson J., Roberts R., Haines J., Stahlman M., Loyd J.E. Heterozygosity for a surfactant protein C gene mutation associated with usual interstitial pneumonitis and cellular nonspecific interstitial pneumonitis in one kindred. Am. J. Respir. Crit. Care. Med. 2002;165(9):1322-1328. https://doi.org/10.1164/rccm.200112-123OC.
71. Tsakiri K.D., Cronkhite J.T., Kuan P.J., Xing C., Raghu G., Weissler J.C., Rosenblatt R.L., Shay J.W., Gracia C.K. Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc. Natl. Acad. Sci. USA. 2007;104(18):7552-7557. https://doi.org/10.1073/pnas.0701009104.
72. Unterbruner K., Matthes F., Schilling J., Nalavade R., Weber S., Winter J., Kraub S. MicroRNAs miR-19, miR-340, miR-374 and miR-542 regulate MID1 protein expression. PLoS One. 2018;13(1):e0190437. https://doi.org/10.1371/journal.pone.0190437.
73. Vazquez B.N., Thackray J.K., Simonet N.G., An W., Vaquero A., Tischfield J.A., Serrano L. SIRT7 mediates L1 elements transcriptional repression and their association with the nuclear lamina. Nucleic Acids Res. 2019;47:7870-7885. https://doi.org/10.1093/nar/gkz519.
74. Wang D., Yan Z., Bu L., An C., Deng B., Zang J., Rao J., Cheng L., Zhang J., Zhang B., Xie J. Protective effect of peptide DR8 on bleomycin-induced pulmonary fibrosis by regulating the TGF-β/MAPK signaling pathway and oxidative stress. Toxicol. Appl. Pharmacol. 2019;382:114703. https://doi.org/10.1016/j.taap.2019.114703.
75. Wei G., Qin S., Li W., Chen L., Ma F. MDTE DB: a database for microRNAs derived from transposable element. IEEE/ACM Trans. Comput. Biol. Bioinform. 2016;13(6):1155-1160. https://doi.org/10.1109/TCBB.2015.2511767.
76. Wei Y.Q., Guo Y.F., Yang S.M., Ma H.H., Li J. MiR-340-5p mitigates the proliferation and activation of fibroblast in lung fibrosis by targeting TGF-β/p38/ATF1 signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2020;24(11):6252-6261. https://doi.org/10.26355/eurrev_202006_21523.
77. Wyman A.E., Noor Z., Fishelevich R., Lockatell V., Shah N.G., Todd N.W., Atamas S.P. Sirtuin 7 is decreased in pulmonary fibrosis and regulates the fibrotic phenotype of lung fibroblasts. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2017;312:L945-L958. https://doi.org/10.1152/ajplung.00473.2016.
78. Xiao L., Jiang L., Hu Q., Li Y. MiR-302e attenuates allergic inflammation in vitro model by targeting RelA. Biosci. Rep. 2018;38(3):BSR20180025. https://doi.org/10.1042/BSR20180025.
79. Yang G., Yang L., Wang W., Wang J., Wang J., Xu Z. Discovery and validation of extracellular/circulating microRNAs during idiopathic pulmonary fibrosis disease progression. Gene. 2015;562:138-144. https://doi.org/10.1016/j.gene.2015.02.065.
80. Zhang Y.F., Gu L.N., Qi J., Xia Q.Q., Tian L.J., Jiang W.L., Cao M.S. Construction of potential idiopathic pulmonary fibrosis related microRNA and messenger RNA regulatory network. Chin. Med. J. (Engl). 2021;134(5):584-586. https://doi.org/10.1097/CM9.0000000000001276.
81. Zhao J., Ren Y., Qu Y., Jiang W., Lv C. Pharmacodynamic and pharmacokinetic assessment of pulmonary rehabilitation mixture for the treatment of pulmonary fibrosis. Sci. Rep. 2017;7:3458. https://doi.org/10.1038/s41598-017-02774-1.
82. Zhu L., Wang L., Luo X., Zhang Y., Ding Q., Jiang X., Wang X., Pan Y., Chen Y. Tollip, an intracellular trafficking protein, is a novel modulator of the transforming growth factor-β signaling pathway. J. Biol. Chem. 2012;287(47):39653-39663. https://doi.org/10.1074/jbc.M112.388009.
83. Zhu M., An Y., Zhang X., Wang Z., Duan H. Experimental pulmonary fibrosis was suppressed by microRNA-506 through NF-kappa-mediated apoptosis and inflammation. Cell. Tissue Res. 2019;378:255-265. https://doi.org/10.1007/s00441-019-03054-2.