EFFECT OF CERTAIN CHROMOSOME REGIONS OF TRITICUM TIMOPHEEVII ON THE FORMATION OF PEST RESISTANCE AND QUANTITATIVE TRAITS IN COMMON WHEAT
Abstract
The effects of introgression fragments from Triticum timopheevii Zhuk. (2n = 28, AtAtGG) and their combinations on resistance to leaf rust, stem rust, powdery mildew, and some quantitative traits were assessed in 15 common wheat introgression lines. Molecular and cytological analyses of the lines demonstrated an advantage of combined use of various marker types in comprehensive characterization of hybrids and detection of translocations and substitutions. Resistance tests to various fungal diseases showed that the lines containing introgression fragments of chromosome 5G were completely resistant to the West Siberian populations of leaf rust and to the stem rust population of the Omsk region. Lines 3862-5 and 3862-15, containing a fragment of the long arm of chromosome 2G, were resistant to West Siberian stem rust populations. No negative effects of the alien genetic material on yield and other quantitative traits were noted. In addition, positive effect of the 2G chromosome fragments of Triticum timopheevii on ear grain number was established. Thus, the introgression lines can be used in breeding programs as donors of resistance genes to fungal diseases.
About the Authors
E. M. TimonovaRussian Federation
I. N. Leonova
Russian Federation
I. A. Belan
Russian Federation
L. P. Rosseeva
Russian Federation
E. A. Salina
Russian Federation
References
1. Леонова И.Н., Родер М.С., Будашкина Е.Б. и др. Молекулярный анализ устойчивых к бурой ржавчине интрогрессивных линий, полученных при скрещивании гексаплоидной пшеницы Triticum aestivum с тетраплоидной пшеницей Triticum timopheevii // Генетика. 2002. Т. 38. № 12. C. 1648–1655.
2. Леонова И.Н., Родер М.С., Калинина Н.П. и др. Генетический анализ и локализация локусов, контролирующих устойчивость интрогрессивных линий Triticum aestivum × Triticum timopheevii к листовой ржавчине // Генетика. 2008. Т. 44. № 12. C. 1652–1659.
3. Салина Е.А., Егорова Е.М., Адонина И.Г. и др. ДНК-маркеры для генотипирования линий мягкой пшеницы (Triticum aestivum L.) с генетическим материалом Aegilops speltoides Tausch и Triticum timopheevii Zhuk. // Информ. вестник ВОГиС. 2008. Т. 12. № 4. C. 620–628.
4. Badaeva E.D., Badaev N.S., Gill B.S. et al. Intraspecifi c karyotype divergence in Triticum araraticum // Plant Syst. Evol. 1994. V. 192. P. 117–145.
5. Badaeva E.D., Budashkina E.B., Badaev N.S. et al. General features of chromosome substitutoins in Triticum aestivum × T. timopheevii hybrids // Theor. Appl. Genet. 1991. V. 82. P. 227–232.
6. Bariana H.S., Hayden M.J., Ahmed N.U. et al. Mapping of durable adult plant and seedling resistances to stripe rust and stem rust diseases in wheat // Aust. J. Agric. Res. 2001. V. 52. P. 1247–1255.
7. Bedbrook J.R., Jones J., O’Dell M. et al. A molecular description of telomeric heterochromatin in Secale species // Cell. 1980. V. 19. P. 545–560.
8. Brevis J.C., Chicaiza O., Khan I.A. et al. Agronomic and quality evaluation of common wheat near-isogenic lines carrying the leaf rust resistance gene Lr47 // Crop Sci. 2008. V. 48. P. 1441–1451.
9. Brown, J.K.M. Yield penalties of disease resistance in crops // Curr. Opin. Plant Biol. 2002. V. 5. P. 339–344.
10. Budashkina E.B., Kalinina N.P. Development and genetic analysis of common wheat introgressive lines resistant to leaf rust // Acta Phytopathol. Entomol. 2001. 36. Р. 61–65.
11. Dyck P.L., Friebe B. Evaluation of leaf rust resistance from wheat chromosomal translocation lines // Crop Sci. 1993. V. 33. P. 687–690.
12. Egorova E., Leonova I., Budashkina E. et al. Application of marker assisted selection for transferring resistance genes from Triticum timopheevii to bread wheat // Proc. of the 20th Intern. Conf. on ITMI/2nd WGC Joint Workshop, 1–5 September 2010. Beijing, China. P. 78.
13. Friebe B., Yiang J., Raupp W.J. et al. Characterization of wheat-alien translocations conferring resistance to diseasesand pests: current status // Euphytica. 1996. V. 91. P. 59–87.
14. Ganal M.W., Röder M.S. Microsatellite and SNP markers in wheat breeding // Genomics-assisted crop improvement / Eds R.K. Varshney, R. Tuberosa. Springer, N.Y., 2007. P. 124.
15. Hayden M., Good G., Sharp P.J. Sequence tagged microsatellite profi ling (STMP): improved isolation of DNA sequence fl anking target SSRs // Nucl. Acids Res. 2002. V. 30. P. 129–133.
16. Järve K., Peusha H.O., Tsymbalova J. et al. Chromosomal location of a Triticum timopheevii-derived powdery mildew resistance gene transferred to common wheat // Genome. 2000. V. 43. P. 377–381.
17. Ji J.H., Qin B., Wang H.Y. et al. STS markers for powdery mildew resistance gene Pm6 in wheat // Euphytica. 2008. V. 163. P. 159–165.
18. Jiang J., Gill B.S. Sequential chromosome banding and in situ hybridization analysis // Genome. 1993. V. 36. P. 792–795.
19. Jiang J., Gill B.S. Different species-specifi c chromosome translocations in Triticum timopheevii and T. turgidum support the diphyletic origin of polyploidy wheats // Chrom. Res. 1994. V. 2. P. 59–64.
20. Jin Y., Szabo L.J. Detection of virulence to resistance gene Sr36 within the TTKS race lineage of Puccinia graminis f. sp. Tritici // Plant Disease. 2009. V. 93. Nо 4. P. 367–370.
21. Jin Y., Singh R.P. Resistance in US wheat to recent Eastern African isolates of Puccinia graminis f. sp tritici with virulence to resistance gene Sr31 // Plant Dis. 2006. V. 90. P. 476–480.
22. Jorgensen J.H., Jensen C.J. Gene Pm6 for resistance to powdery mildew in wheat // Euphytica. 1973. V. 22. P. 4–23.
23. Kjær B., Jensen H.P., Jensen J. et al. Associations between three mlo powdery mildew resistance genes and agronomic traits in barley // Euphytica. 1990. V. 46. P. 185–193.
24. Knott D.R. Translocations involving Triticum chromosomes and Agropyron chromosomes carrying leaf rust resistance // Can. J. Genet. Cytol. 1968. V. 10. P. 695–696.
25. Kumlay A.M., Baenziger P.S., Gill K.S. et al. Understanding the effect of rye chromatin in bread wheat // Crop Sci. 2003. V. 43. Nо 5. P. 1643–1651.
26. Labuschagne M.T., Pretorius Z.A., Grobbelaar B. The infl uence of leaf rust resistance genes Lr29, Lr34, Lr35 and Lr37 on breadmaking quality in wheat // Euphytica. 2002. V. 124. P. 65–70.
27. Leonova I.N., Budashkina E.B., Flath K. et al. Microsatellite mapping of a leaf rust resistance gene transferred to common wheat to Triticum timopheevii // Cereal Res. Commun. 2010. 38. P. 212219.
28. Liu Y., Liu D., Zhang H. et al. Allelic variation, sequence determination and microsatellite screening at the XGWM261 locus in Chinese hexaploid wheat (Triticum aestivum) varieties // Euphytica. 2005. V. 145. P. 103–112.
29. Maghirang E.B., Lookhart G.L., Bean S.R. et al. Comparison of quality characteristics and breadmaking functionality of hard red winter and hard red spring wheat // Cereal Chem. 2006. V. 83. P. 520–528.
30. Mains E.B., Jackson H.S. Physiological specialization in the leaf rust of wheat, Puccinia triticina Erikss // Phytopathology. 1926. V. 16. P. 89–120.
31. Maxwell J.J., Lyerly J.H., Cowger C. et al. MlAG12: a Triticum timopheevii derived powdery mildew resistance gene in common wheat on chromosome 7AL // Theor. Appl. Genet. 2009. V. 119. P. 1489–1495.
32. McIntosh R.A., Wellings C.R., Park R.F. Wheat Rusts: An Atlas of Resistance Genes. CSIRO Publ., Collingwood, Australia, 1995.
33. McIntosh R.A., Yamazaki Y., Dubcovsky J. et al. Catalogue of Gene Symbols for Wheat // www.grs.nig.ac.jp/wheat/komugi/genes/. 2008.
34. Mebrate S.A., Oerke E.C., Dehne H.W. et al. Mapping of the leaf rust resistance gene Lr38 on wheat chromosome arm 6DL using SSR markers // Euphytica. 2008. V. 162. P. 457–466.
35. Ortelli, S., Winzeler H., Winzeler M. et al. Leaf rust resistance gene Lr9 and winter wheat yield reduction: I.
36. Yield and yield components // Crop Sci. 1996. V. 36. P. 1590–1595.
37. Perugini L.D., Murphy J.P., Marshall D. et al. Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii // Theor. Appl. Genet. 2008. V. 116. P. 417–425.
38. Peterson R.F., Campbell A.B., Hannah A.E. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals // Can. J. Res. (Section C). 1948. 26. P. 496–500.
39. Plaschke J., Ganal M.W., Rцder M.S. Detection of genetic diversity in closely related bread wheat using microsatellite markers // Theor. Appl. Genet. 1995. V. 91. P. 1001–1007.
40. Qi L., Friebe B., Zhang P. et al. Homoeologous recombination, chromosome engineering and crop improvement // Chromosome Res. 2007. V. 15. P. 3–19.
41. Roelfs A.P., Singh R.P., Saari E.E. Rust diseases of wheat: concepts and methods of disease management, CIMMYT Mexico, 1992. P. 45.
42. Saari E.E., Prescott J.M. A scale for appraising the foliar intensity of wheat diseases // Plant Dis. Rep. 1975. V. 59. P. 377–380.
43. Salina E.A., Leonova I.N., Efremova T.T. et al. Wheat genome structure: translocations during the course of polyploidization // Funct. Integr. Genomics. 2006a. V. 6. P. 71–80.
44. Salina E.A., Lim K.Y., Badaeva E.D. et al. Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids // Genome. 2006b. V. 49. P. 1023–1035.
45. Singh R.P., Huerta-Espino J., Rajaram S. et al. Agronomic effects from chromosome translocations 7DL.7Ag and 1BL.1RS in spring wheat // Crop Sci. 1998. V. 38. P. 27–33.
46. Sourdille P., Singh S., Cadalen T. et al. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.) // Funct. Integr. Genomics. 2004. V. 4. P. 12–25.
47. Tao W., Liu D., Liu J. et al. Genetic mapping of the powdery mildew resistance gene Pm6 in wheat by RFLP analysis // Theor. Appl. Genet. 2000. V. 100. P. 564–556.
48. Tsilo T.J., Jin Y., Anderson J.A. Diagnostic microsatellite markers for the detection of stem rust resistance gene Sr36 in diverse genetic backgrounds of wheat // Crop Sci. 2008. V. 48. P. 253–261.
49. Uhrin A., Lбng L., Bedх Z. Comparison of PCR-based DNA markers for using different Lr19 and Lr24 leaf rust resistance wheat sources // Cereal Res. Commun. 2008. V. 36. Nо 4. P. 533–541.
50. Yamamori M. An N-band marker for gene Lrl8 for resistance to leaf rust in wheat // Theor. Appl. Genet. 1994. V. 89. P. 643–646.
51. Zeven A.C., Knott D.R., Johnson R. Investigation of linkage drag in near isogenic lines of wheat by testing for seedling reaction to races of stem rust, leaf rust and yellow rust // Euphytica. 1983. V. 32. P. 319–327.
52. Zhang L.Y., Bernard M., Leroy P. et al. High transferability of bread wheat EST-derived SSRs to other cereals // Theor. Appl. Genet. 2005. V. 111. P. 677–687.