Improving the efficacy of potato clonal micropropagation by inoculation with the rhizosphere bacteria Azospirillum baldaniorum Sp245 and Ochrobactrum cytisi IPA7.2
https://doi.org/10.18699/VJGB-22-52
Abstract
Sustainable development of agriculture depends on the provision of quality seeds to the market. Inoculation with plant-growth-promoting rhizobacteria in in vitro culture can be used to improve the growth efficacy and performance of microplants. We examined the effect of in vitro inoculation of microplants of the cultivars Nevsky and Kondor with the strains Azospirillum baldaniorum Sp245 and Ochrobactrum cytisi IPA7.2 separately and in combination. We examined the morphological variables of plant growth in in vitro culture and under ex vitro adaptation conditions; we also investigated the growth and performance of the plants in the greenhouse. The dependence of the inoculation eff icacy on potato genotype, growth stage, and inoculum composition was ascertained throughout the experiment. In vitro, A. baldaniorum Sp245 alone and in combination with O. cytisi IPA7.2 promoted the formation of roots on the microplants of both cultivars and the growth of Nevsky shoots. During plant growth ex vitro, all growth variables of the Nevsky microplants were promoted by O. cytisi IPA7.2 alone and in combination with A. baldaniorum Sp245. In both cultivars grown in the greenhouse, shoot growth was promoted in most inoculation treatments. The survival ability of the Nevsky microplants in the greenhouse increased 1.7-fold under the effect of simultaneous inoculation. Inoculation of microplants with a combination of A. baldaniorum Sp245 and O. cytisi IPA7.2 increased the number of Nevsky minitubers 1.5-fold and the number of Kondor minitubers 3.5-fold. Inoculation with the tested strains can be used to promote the growth of microplants and increase the yield of minitubers in potato seed breeding for the production of healthy planting material.
Keywords
About the Authors
K. Yu. KargapolovaRussian Federation
Saratov
O. V. Tkachenko
Russian Federation
Saratov
G. I. Burygin
Russian Federation
Saratov
N. V. Evseeva
Russian Federation
Saratov
A. A. Shirokov
Russian Federation
Saratov
L. Yu. Matora
Russian Federation
Saratov
S. Yu. Shchyogolev
Russian Federation
Saratov
References
1. Andreote F.D., Rocha U.N., Araújo W.L., Azevedo J.L., van Overbeek L.S. Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanum tuberosum). Antonie Leeuwenhoek. 2010; 97(4):389-399. DOI 10.1007/s10482-010-9421-9.
2. Arkhipova T.N., Evseeva N.V., Tkachenko O.V., Burygin G.L., Vysotskaya L.B., Akhtyamova Z.A., Kudoyarova G.R. Rhizobacteria inoculation effects on phytohormone status of potato microclones cultivated in vitro under osmotic stress. Biomolecules. 2020;10(9): 1231. DOI 10.3390/biom10091231.
3. Bacilio M., Moreno M., Lopez-Aguilar D.R., Bashan Y. Scaling from the growth chamber to the greenhouse to the field: demonstration of diminishing effects of mitigation of salinity in peppers inoculated with plant growth-promoting bacterium and humic acids. Appl. Soil Ecol. 2017;119:327-338. DOI 10.1016/j.apsoil.2017.07.002.
4. Baldani V.L.D., Baldani J.I., Döbereiner J. Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can. J. Microbiol. 1983;29(8):924-929. DOI 10.1139/m83-148.
5. Belimov A.A., Dodd I.C., Safronova V.I., Shaposhnikov A.I., Azarova T.S., Makarova N.M., Davies W.J., Tikhonovich I.A. Rhizobacteria that produce auxins and contain 1-amino-cyclopropane- 1-carboxylic acid deaminase decrease amino acid concentrations in the rhizosphere and improve growth and yield of well-watered and water-limited potato (Solanum tuberosum). Ann. Appl. Biol. 2015; 167(1):11-25. DOI 10.1111/aab.12203.
6. Burygin G.L., Kargapolova K.Y., Evseeva N.V., Tkachenko O.V. Peculiarities of plant inoculation with rhizosphere bacteria as a factor increasing the efficacy of potato microclonal propagation. Vestnik Biotehnologii i Fiziko-Khimicheskoy Biologii im. Y.А. Ovchinnikova = Yu.A. Ovchinnikov Bulletin of Biotechnology and Physical and Chemical Biology. 2018;14(2):12-16. (in Russian)
7. Burygin G.L., Kargapolova K.Y., Kryuchkova Y.V., Avdeeva E.S., Gogoleva N.E., Ponomaryova T.S., Tkachenko O.V. Ochrobactrum cytisi IPA7.2 promotes growth of potato microplants and is resistant to abiotic stress. World J. Microbiol. Biotechnol. 2019;35(4):55. DOI 10.1007/s11274-019-2633-x.
8. Burygin G.L., Popova I.A., Kargapolova K.Y., Tkachenko O.V., Matora L.Y., Shchyogolev S.Y. A bacterial isolate from the rhizosphere of potato (Solanum tuberosum L.) identified as Ochrobactrum lupini IPA7.2. Agric. Biol. 2017;52(1):105-115. DOI 10.15389/agrobiology.2017.1.105eng.
9. Castillo-Pérez L.J., Martínez-Soto D., Fortanelli-Martínez J., Carranza- Álvarez C. Asymbiotic seed germination, in vitro seedling development, and symbiotic acclimatization of the Mexican threatened orchid Stanhopea tigrina. Plant Cell Tissue Organ Cult. 2021;146:249-257. DOI 10.1007/s11240-021-02064-9.
10. Cesari A.B., Paulucci N.S., López-Gómez M., Hidalgo-Castellanos J., Plá C.L., Dardanelli M.S. Performance of Bradyrhizobium and Bradyrhizobium–Azospirillum in alleviating the effects of waterrestrictive conditions during the early stages of Arachis hypogaea growth. J. Plant Growth Regul. 2019;38:1362-1374. DOI 10.1007/s00344-019-09939-4.
11. Dias A.C.F., Costa F.E.C., Andreote F.D., Lacava P.T., Teixeira M.A., Assumpção L.C., Araújo W.L., Azevedo J.L., Melo I.S. Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World J. Microbiol. Biotechnol. 2009;25:189-195. DOI 10.1007/s11274-008-9878-0.
12. Döbereiner J., Day J.M. Associative symbioses in tropical grasses: characterization of microorganisms and nitrogen-fixing sites. In: Pro-ceedings of the 1st Int. Symp. on Nitrogen Fixation. Washington State Univ., 1976;518-538.
13. Evseeva N.V., Tkachenko O.V., Denisova A.Y., Burygin G.L., Veselov D.S., Matora L.Y., Shchyogolev S.Y. Functioning of plant-bacterial associations under osmotic stress in vitro. World J. Microbiol. Biotechnol. 2019;35:195. DOI 10.1007/s11274-019-2778-7.
14. Ferreira N.D.S., Sant’Anna F.H., Reis V.M., Ambrosini A., Volpiano C.G., Rothballer M., Schwab S., Baura V.A., Balsanelli E., Pedrosa F.O., Passaglia L.M.P., de Souza E.M., Hartmann A., Cassan F., Zilli J.E. Genome-based reclassification of Azospirillum brasilense Sp245 as the type strain of Azospirillum baldaniorum sp. nov. Int. J. Syst. Evol. Microbiol. 2020;70(12):6203-6212. DOI 10.1099/ijsem.0.004517.
15. Gavilanes F.Z., Andrade D.S., Zucareli C., Horácio E.H., Yunes J.S., Barbosa A.P., Alves L.A.R., Cruzatty L.G., Maddela N.R., Guimarães M.F. Co-inoculation of Anabaena cylindrica with Azospirillum brasilense increases grain yield of maize hybrids. Rhizosphere. 2020;15:100224. DOI 10.1016/j.rhisph.2020.100224.
16. Kargapolova K.Y., Burygin G.L., Tkachenko O.V., Evseeva N.V., Pukhalskiy Y.V., Belimov A.A. Effectiveness of inoculation of in vitrogrown potato microplants with rhizosphere bacteria of the genus Azospirillum. Plant Cell Tissue Organ Cult. 2020;141:351-359. DOI 10.1007/s11240-020-01791-9.
17. Murashige T., Skoog G. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962;15(3):473-497. DOI 10.1111/j.1399-3054.1962.tb08052.x.
18. Naqqash T., Hameed S., Imran A., Hanif M.K., Majeed A., van Elsas J.D. Differential response of potato toward inoculation with taxonomically diverse plant growth promoting rhizobacteria. Front. Plant Sci. 2016;7:144. DOI 10.3389/fpls.2016.00144.
19. O’Brien A.M., Harrison T.L. Host match improves root microbiome growth. Nat. Microbiol. 2021;6(9):1103-1104. DOI 10.1038/s41564-021-00957-1.
20. Oliveira A.L.M., Urquiaga S., Döbereiner J., Baldani J.I. The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil. 2002;242:205-215. DOI 10.1023/A:1016249704336.
21. Orlikowska T., Nowak K., Reed B. Bacteria in the plant tissue culture environment. Plant Cell Tissue Organ Cult. 2017;128:487-508. DOI 10.1007/s11240-016-1144-9.
22. Oswald A., Calvo V.P., Davila D.Z., Pineda J.A. Evaluating soil rhizobacteria for their ability to enhance plant growth and tuber yield in potato. Ann. Appl. Biol. 2010;157(2):259-271. DOI 10.1111/j.1744-7348.2010.00421.x.
23. Panahyan-e-Kivi M., Raei Y., Hassanpanah D. Study the effect of growth promoting bacteria (GPRB) on number and weight of mini-tubers of Solanum tuberosum cultivars in greenhouse conditions. J. Fundam. Appl. Sci. 2016;8(2S):28-38. DOI 10.4314/jfas.v8i2s.556.
24. Rajasekharan P.E., Sahijram L. Plant biology and biotechnology. In: Plant Biology and Biotechnology. Vol. II. Plant genomics and biotechnology. New Delhi: Springer, 2015:417-443. DOI 10.1007/978-81-322-2283-5_30.
25. Santiago C.D., Yagi S., Ijima M., Nashimoto T., Sawada M., Ikeda S., Asano K., Orikasa Y., Ohwada T. Bacterial compatibility in combined inoculations enhances the growth of potato seedlings. Microbes Environ. 2017;32(1):14-23. DOI 10.1264/jsme2.ME16127.
26. Shelud’ko A.V., Shirokov A.A., Sokolova M.K., Sokolov O.I., Petrova L.P., Matora L.Y., Katsy E.I. Wheat root colonization by Azospirillum brasilense strains with different motility. Microbiology. 2010;79(5):688-695. DOI 10.1134/S0026261710050140.
27. Soumare A., Diédhiou A.G., Arora N.K., Al-Ani L.K.T., Ngom M., Fall S., Hafidi M., Ouhdouch Y., Kouisni L., Sy M.O. Potential role and utilization of plant growth promoting microbes in plant tissue culture. Front. Microbiol. 2021;12:649878. DOI 10.3389/fmicb.2021.649878.
28. Thomas J., Ajay D., Kumar R.R., Mandal A.K.А. Influence of beneficial microorganisms during in vivo acclimatization of in vitro-derived tea (Camellia sinensis) plants. Plant Cell Tissue Organ Cult. 2010;101:365-370. DOI 10.1007/s11240-010-9687-7.
29. Tkachenko O.V., Evseeva N.V., Boikova N.V., Matora L.Y., Burygin G.L., Lobachev Y.V., Shchyogolev S.Y. Improved potato microclonal reproduction with the plant-growth promoting rhizobacteria Azospirillum. Agron. Sustain. Develop. 2015;35:1167-1174. DOI 10.1007/s13593-015-0304-3.
30. Tkachenko O.V., Evseeva N.V., Terentyeva E.V., Burygin G.L., Shirokov A.А., Burov A.М., Matora L.Y., Shchyogolev S.Y. Improved production of high-quality potato seeds in aeroponics with plantgrowth- promoting rhizobacteria. Potato Res. 2021;64:55-66. DOI 10.1007/s11540-020-09464-y.
31. Trdan S., Vučajnk F., Bohinc T., Vidrih M. The effect of a mixture of two plant growth-promoting bacteria from Argentina on the yield of potato, and occurrence of primary potato diseases and pest – short communication. Acta Agric. Scand. B Soil Plant Sci. 2019;69(1): 89-94. DOI 10.1080/09064710.2018.1492628.
32. Wang X., Yam T., Meng Q., Zhu J., Zhang P., Wu H., Wang J., Zhao Y., Song X. The dual inoculation of endophytic fungi and bacteria promotes seedlings growth in Dendrobium catenatum (Orchidaceae) under in vitro culture conditions. Plant Cell Tissue Organ Cult. 2016;126(3):523-531. DOI 10.1007/s11240-016-1021-6.
33. Yegorenkova I.V., Tregubova K.V., Burygin G.L., Matora L.Y., Ignatov V.V. Assessing the efficacy of co-inoculation of wheat seedlings with the associative bacteria Paenibacillus polymyxa 1465 and Azospirillum brasilense Sp245. Can. J. Microbiol. 2016;62(3):279-285. DOI 10.1139/cjm-2015-0647.