1. Bashan Y., de-Bashan L.E. How the plant growth-promoting bacterium Azospirillum promotes plant growth - a critical assessment. Adv. Agron. 2010;108:77-136. https://doi.org/10.1016/S0065-2113(10)08002-8.
2. Boleta E.H.M., Shitate Galindo F., Jalal A., Santini J.M.K., Rodrigues W.L., Lima B.H.D., Arf O., da Silva M.R., Buzetti S., Teixeira Filho M.C.M. Inoculation with growth-promoting bacteria Azospirillum brasilense and its effects on productivity and nutritional accumulation of wheat cultivars. Front. Sustain. Food Syst. 2020;4:607262. https://doi.org/10.3389/fsufs.2020.607262.
3. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal. Biochem. 1976;72(1-2):248-254. https://doi.org/10.1006/abio.1976.9999.
4. Breckle S.W. Growth under stress: heavy metals. In: Waisel Y., Kafkafi U. (Eds.) Plant Roots: The Hidden Half. N.Y.: Marsel Dekker Inc., 1991;351-373.
5. Caiola M.G., Canini A., Botta A.L., Del Gallo M. Localization of Azospirillum brasilense Cd in inoculated tomato (Lycopersicon esculentum Mill.) roots. Ann. Microbiol. 2004;54(4):365-380.
6. Caverzan A., Casassola A., Brammer S.P. Antioxidant responses of wheat plants under stress. Genet. Mol. Biol. 2016;39(1):1-6. https://doi.org/10.1590/1678-4685-GMB-2015-0109.
7. Criquet S., Joner E., Leglize P., Leyval C. Anthracene and mycorrhiza affect the activity of oxidoreductases in the roots and the rhizosphere of lucerne (Medicago sativa L.). Biotechnol. Lett. 2000;22:1733-1737. https://doi.org/10.1023/A:1005604719909.
8. Dang V.B.H., Doan H.D., Dang-Vu T., Lohi A. Equilibrium and kinetics of biosorption of cadmium (II) and copper (II) ions by wheat straw. Biores. Technol. 2009;100(1):211-219. https://doi.org/10.1080/19443994.2012.691745.
9. de Oliveira Pinheiro R., Boddey L.H., James E.K., Sprent J., Boddey R. Adsorption and anchoring of Azospirillum strains to roots of wheat seedlings. Plant Soil. 2002;246(2):151-166. https://doi.org/10.1023/A:1020645203084.
10. Dos Santos F.N., Hayashi Sant’ A.F., Massena R.V., Ambrosini A., Gazolla V.C., Rothballer M., Schwab S., Baura V.A., Balsanelli E., Pedrosa F.O., Pereira P.L.M., de Souza E.M., Hartmann A., Cassan F., Zilli J.E. Genome-based reclassification of Azospirillum brasilense Sp245 as the type strain of Azospirillum baldaniorum sp. nov. Int. J. Syst. Evol. Microbiol. 2020;70:6203-6212. https://doi.org/10.1099/ijsem.0.004517.
11. El-Samad A.H.M. The biphasic role of cupper and counteraction with Azospirillum brasilense application on growth, metabolities, osmotic pressure and mineral of wheat plant. Am. J. Plant Sci. 2017;8: 1182-1195. https://doi.org/10.4236/AJPS.2017.85078.
12. Fukami J., Cerezini P., Hungria M. Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express. 2018;8(1):73. https://doi.org/10.1186/s13568-018-0608-1.
13. Galindo F.S., Rodrigues W.L., Biagini A.L.C., Fernandes G.C., Baratella E.B., da Silva C.A., Jr, Buzetti S., Teixeira Filho M.C.M. Assessing forms of application of Azospirillum brasilense associated with silicon use on wheat. Agronomy. 2019;9(11):678. https://doi.org/10.3390/agronomy9110678.
14. Hoagland D.R., Arnon D.I. The Water-Culture Method for Growing Plants without Soil. Berkeley: Univ. of California, 1950;347:8.
15. Huang X.D., El-Alawi Y., Penrose D.M., Glick B.R., Greenberg B.M. Responses of three grass species to creosote during phytoremediation. Environ. Pollut. 2004;130(3):453-463. https://doi.org/10.1016/j.envpol.2003.12.018.
16. Kamnev A.A., Tugarova A.V., Antonyuk L.P. Endophytic and epiphytic strains of Azospirillum brasilense respond differently to heavy metal stress. Microbiology. 2007;76(6):809-811. https://doi.org/10.1134/S0026261707060239.
17. Kamnev A.A., Tugarova A.V., Antonyuk L.P., Tarantilis P.A., Polissiou M.G., Gardiner P.H.E. Effects of heavy metals on plant-associated rhizobacteria: comparison of endophytic and non-endophytic strains of Azospirillum brasilense. J. Trace Elem. Med. Biol. 2005; 19(1):91-95. https://doi.org/10.1016/j.jtemb.2005.03.002.
18. Larionov М.V., Larionov N.V. Characteristics of accumulation of heavy metals in soil ecosystems of Saratov Volga river region. Vestnik Orenburgskogo Gosudarstvennogo Universiteta = Vestnik of the Orenburg State University. 2010;1(107):110-114. (in Russian) Leonowicz A., Grzywnowicz K. Quantitative estimation of laccase forms in somewhite-rot fungi using syringaldazine as a substrate. Enzyme Microb. Technol. 1981;3:55-58. https://doi.org/10.1016/0141-0229(81)90036-3.
19. Liu Y., Chen Y., Yang Y., Zhang Q., Fu B., Cai J., Guo W., Shi L., Wu J., Chen Y. A thorough screening based on QTLs controlling zinc and copper accumulation in the grain of different wheat genotypes. Environ. Sci. Pollut. Res. 2021;28:15043-15054. https://doi.org/10.1007/s11356-020-11690-3.
20. Lyubun Y., Muratova A., Dubrovskaya E., Sungurtseva I., Turkovskaya O. Combined effects of cadmium and oil sludge on sorghum: growth, physiology, and contaminant removal. Environ. Sci. Pollut. Res. 2020;27:22720-22734. https://doi.org/10.1007/s11356-020-08789-y.
21. Medvedev I.F., Derevyagin S.S. Heavy Metals in Ecosystems. Saratov: Rakurs Publ., 2017. (in Russian)
22. Michaud A.M., Bravin M.N., Galleguillos M., Hinsinger P. Copper uptake and phytotoxicity as assessed in situ for durum wheat (Triticum turgidum durum L.) cultivated in Cu-contaminated, former vineyard soils. Plant Soil. 2007;298(1-2):99-111. https://doi.org/10.1007/s11104-007-9343-0.
23. Nadeem S.M., Naveed M., Ahmad M., Zahir Z.A. Rhizosphere bacteria for crop production and improvement of stress tolerance: mechanisms of action, applications, and future prospects. In: Plant Microbes Symbiosis: Applied Facets. India: Springer, 2015;1-36. https://doi.org/10.1007/978-81-322-2068-8_1.
24. Pichhode M., Nikhil K. Effect of copper mining dust on the soil and vegetation in India: a critical review. Int. J. Mod. Sci. Eng. Technol. 2015;2(2):73-76.
25. Prasad D.D.K., Prasad A.R.K. Altered 5-aminolevulinic acid metabolism by lead and mercury in germinating seedlings of Bajra (Pennisetum typhoideum). J. Plant Physiol. 1987;127:241-249. https://doi.org/10.1007/BF02702668.
26. Prasad M.N.V., Strzalka K. Impact of heavy metals on photosynthesis. In: Prasad M.N.V., Hagemeyer J. (Eds.) Heavy Metal Stress in Plants: From Molecules to Ecosystems. Berlin: Springer, 1999;117-138. https://doi.org/10.1007/978-3-662-07745-0_6.
27. Quartacci M.F., Pinzino C., Sgherri C.L.M., Dalla Vecchia F., Navari-Izzo F. Growth in excess copper induces changes in the lipid composition and fluidity of PSII-enriched membranes in wheat. Physiol. Plantarum. 2000;108:87-93. https://doi.org/10.1034/j.1399-3054.2000.108001087.x.
28. Rai R., Agrawal M., Agrawal S.B. Impact of heavy metals on physiological processes of plants: with special reference to photosynthetic system. Ch. 6. In: Singh A., Prasad S.M., Singh R.P. (Eds.) Plant Responses to Xenobiotics. Singapore: Springer Nature, 2016;127-140. https://doi.org/10.1007/978-981-10-2860-1_6.
29. Rais A., Jabeen Z., Shair F., Hafeez F.Y., Hassan M.N. Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS One. 2017;12(11): e0187412. https://doi.org/10.1371/journal.pone.0187412.
30. Reis V., Baldani V.L.D., Baldani J.I. Isolation, identification and biochemical characterization of Azospirillum spp. and other nitrogenfixing bacteria. In: Cassán F., Okon Y., Creus C. (Eds.) Handbook for Azospirillum. Basel: Springer, 2015;10:978-983. https://doi.org/10.1007/978-3-319-06542-7_1.
31. Rothballer M., Schmid M., Hartmann A. In situ localization and PGPReffect of Azospirillum brasilense strains colonizing roots of different wheat varieties. Symbiosis. 2003;34:261-279.
32. Sayyad G., Afyuni M., Mousavi S.-F., Abbaspour K.C., Hajabbasi M.A., Richards B.K., Schulin R. Effects of cadmium, copper, lead, and zinc contamination on metal accumulation by safflower and wheat. Soil Sediment Contam. Int. J. 2009;18(2):216-228. https://doi.org/10.1080/15320380802660248.
33. Statsenko A.P., Tuzhilova L.I., Vyugovsky A.A. Plant peroxidases - markers of chemical pollution of natural environments. Vestnik Orenburgskogo Gosudarstvennogo Universiteta = Vestnik of the Orenburg State University. 2008;10(92):188-191. (in Russian)
34. Sullivan M.L. Beyond brown: polyphenol oxidases as enzymes of plant specialized metabolism. Front. Plant Sci. 2015;5:783. https://doi.org/10.3389/fpls.2014.00783.
35. Teixeira Filho M.C.M.T., Galindo F.S., Buzetti S., Santini J.M.K. Inoculation with Azospirillum brasilense improves nutrition and increases wheat yield in association with nitrogen fertilization. Ch. 6. In: Wanyera R., Owuoche J. (Eds.) Wheat Improvement, Management and Utilization. IntechOpen, 2017;99-114. https://doi.org/10.5772/67638.
36. Titov A.F., Kaznina N.M., Talanova V.V. Heavy Metals and Plants. Petrozavodsk: Karelian Research Centre of RAS, 2014. (in Russian)
37. Wang H., Zhong G., Shi G., Pan F. Toxicity of Cu, Pb, and Zn on seed germination and young seedlings of wheat (Triticum aestivum L.). In: Li D., Liu Y., Chen Y. (Eds.) Computer and Computing Technologies in Agriculture IV. CCTA 2010. IFIP Advances in Information and Communication Technology. Vol. 346. Berlin; Heidelberg: Springer, 2011;231-240. https://doi.org/10.1007/978-3-642-18354-6_29.
38. Wang S., Wu W., Liu F., Liao R., Hu Y. Accumulation of heavy metals in soil-crop systems: a review for wheat and corn. Environ. Sci. Pollut. Res. 2017;24(18):15209-15225. https://doi.org/10.1007/s11356-017-8909-5.
39. Yaneva O.D. Mechanisms of bacterial resistance to heavy metal ions. Mikrobiologichnyi Zhurnal = Microbiological Journal. 2009; 71(6):54-65. (in Ukrainian)
40. Yang Y.-J., Cheng L.-M., Liu Z.-H. Rapid effect of cadmium on lignin biosynthesis in soybean roots. Plant Sci. 2007;172:632-639. https://doi.org/10.1016/j.plantsci.2006.11.018.
41. Yruela I. Cooper in plants. Braz. J. Plant Physiol. 2005;17(1):145-156. https://doi.org/10.1590/S1677-04202005000100012.