1. Arnold P.A., Levin S.C., Stevanovic A.L., Johnson K.N. Drosophila melanogaster infected with Wolbachia strain wMelCS prefer cooler temperatures. Ecol. Entomol. 2019;44(2):287-290. https://doi.org/10.1111/een.12696.
2. Burdina E.V., Bykov R.A., Menshanov P.N., Ilinsky Y.Y., Gruntenko N.Е. Unique Wolbachia strain wMelPlus increases heat stress resistance in Drosophila melanogaster. Arch. Insect Biochem. Physiol. 2021;106(4):e21776. https://doi.org/10.1002/arch.21776.
3. Bykov R.A., Ilinskii Yu.Yu., Voloshina M.A., Zakharov I.K. Prevalence and genotypic diversity of the symbiotic bacterium Wolbachia in the Drosophila melanogaster population of Nalchik. Russ. J. Genet. Appl. Res. 2014;4:539-542. https://doi.org/10.1134/S2079059714060057.
4. Bykov R.А., Yudina M.A., Gruntenko N.E., Zakharov I.K., Voloshina M.A., Melashchenko E.S., Danilova M.V., Mazunin I.O., Ilinsky Y.Y. Prevalence and genetic diversity of Wolbachia endosymbiont and mtDNA in Palearctic populations of Drosophila melanogaster. BMC Evol. Biol. 2019;19(1):45-53. https://doi.org/10.1186/s12862-019-1372-9.
5. Chrostek E., Marialva M.S., Esteves S.S., Weinert L.A., Martinez J., Jiggins F.M., Teixeira L. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet. 2013;9(12):e1003896. https://doi.org/10.1371/journal.pgen.1003896.
6. Clark M.E., Anderson C.L., Cande J., Karr T.L. Widespread prevalence of Wolbachia in laboratory stocks and the implications for Drosophila research. Genetics. 2005;170(4):1667-1675. https://doi.org/10.1534/genetics.104.038901.
7. Early A.M., Clark A.G. Monophyly of Wolbachia pipientis genomes within Drosophila melanogaster: geographic structuring, titre variation and host effects across five populations. Mol. Ecol. 2013; 22(23):5765-5778. https://doi.org/10.1111/mec.12530.
8. Flores H.A., Taneja de Bruyne J., O’Donnell T.B., Tuyet Nhu V., Thi Giang N., Thi Xuan Trang H., … Thi Hue Kien D., Thuy Vi T., Willis B., O’Neill S.L., Simmons C.P., Carrington L.B. Multiple Wolbachia strains provide comparative levels of protection against dengue virus infection in Aedes aegypti. PLoS Pathog. 2020;16(4): e1008433. https://doi.org/10.1371/journal.ppat.1008433.
9. Gruntenko N.Е., Ilinsky Y.Y., Adonyeva N.V., Burdina E.V., Bykov R.A., Menshanov P.N., Rauschenbach I.Y. Various Wolbachia genotypes differently influence host Drosophila dopamine metabolism and survival under heat stress conditions. BMC Evol. Biol. 2017;17(2):15-22. https://doi.org/10.1186/s12862-017-1104-y.
10. Hedges L.M., Brownlie J.C., O’Neill S.L., Johnson K.N. Wolbachia and virus protection in insects. Science. 2008;322(5902):702. https://doi.org/10.1126/science.1162418.
11. Hoffmann A.A., Clancy D.J., Merton E. Cytoplasmic incompatibility in Australian populations of Drosophila melanogaster. Genetics. 1994; 136(3):993-999. https://doi.org/10.1093/genetics/136.3.993.
12. Hoffmann A.A., Hercus M., Dagher H. Population dynamics of the Wolbachia infection causing cytoplasmic incompatibility in Drosophila melanogaster. Genetics. 1998;148(1):221-231. https://doi.org/10.1093/genetics/148.1.221.
13. Ilinsky Y. Coevolution of Drosophila melanogaster mtDNA and Wolbachia genotypes. PLoS One. 2013;8(1):e54373. https://doi.org/10.1371/journal.pone.0054373.
14. Ilinsky Y.Y., Bykov R.A., Zakharov I.K. Cytotypes of mutant Drosophila melanogaster stocks from the collection of the genetics of population laboratory of the Institute of Cytology and Genetics SB RAS: genotypes of the Wolbachia endosymbiont and host mitotypes. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2014;17(3):404-423. (in Russian)
15. Ilinsky Yu.Yu., Zakharov I.K. The endosymbiont Wolbachia in Eurasian populations of Drosophila melanogaster. Russ. J. Genet. 2007a;43(7):748-756. https://doi.org/10.1134/S102279540707006X.
16. Ilinsky Yu.Yu., Zakharov I.K. Infection of the Uman’ population of Drosophila melanogaster with the cytoplasmic endosymbiont Wolbachia. Dokl. Biol. Sci. 2007b;413(1):166-168. https://doi.org/10.1134/S0012496607020238.
17. Ilinsky Yu.Yu., Zakharov I.K. Cytoplasmic incompatibility in Drosophila melanogaster is caused by different Wolbachia genotypes. Russ. J. Genet. Appl. Res. 2011;1(5):458-462. https://doi.org/10.1134/S2079059711020031.
18. Kriesner P., Conner W.R., Weeks A.R., Turelli M., Hoffmann A.A. Persistence of a Wolbachia infection frequency cline in Drosophila melanogaster and the possible role of reproductive dormancy. Evolution. 2016;70(5):979-997. https://doi.org/10.1111/evo.12923.
19. Mazzucco R., Nolte V., Vijayan T., Schlötterer C. Long-term dynamics among Wolbachia strains during thermal adaptation of their Drosophila melanogaster hosts. Front. Genet. 2020;11:482. https://doi.org/10.3389/fgene.2020.00482.
20. Min K.T., Benzer S. Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc. Natl. Acad. Sci. USA. 1997;94(20):10792-10796. https://doi.org/10.1073/pnas.94.20.10792
21. Richardson M.F., Weinert L.A., Welch J.J., Linheiro R.S., Magwire M.M., Jiggins F.M., Bergman C.M. Population genomics of the Wolbachia endosymbiont in Drosophila melanogaster. PLoS Genet. 2012;8(12):e1003129. https://doi.org/10.1371/journal.pgen.1003129.
22. Riegler M., Sidhu M., Miller W.J., O’Neill S.L. Evidence for a global Wolbachia replacement in Drosophila melanogaster. Curr. Biol. 2005;15(15):1428-1433. https://doi.org/10.1016/j.cub.2005.06.069.
23. Schultz M.J., Isern S., Michael S.F., Corley R.B., Connor J.H., Frydman H.M. Variable inhibition of Zika virus replication by different Wolbachia strains in mosquito cell cultures. J. Virol. 2017;91(14): e00339-17. https://doi.org/10.1128/JVI.00339-17.
24. Serga S., Maistrenko O., Rozhok A., Mousseau T., Kozeretska I. Fecundity as one of possible factors contributing to the dominance of the wMel genotype of Wolbachia in natural populations of Drosophila melanogaster. Symbiosis. 2014;63(1):11-17. https://doi.org/10.1007/s13199-014-0283-1.
25. Teixeira L., Ferreira Á., Ashburner M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 2008;6(12):e1000002. https://doi.org/10.1371/journal.pbio.1000002.
26. Truitt A.M., Kapun M., Kaur R., Miller W.J. Wolbachia modifies thermal preference in Drosophila melanogaster. Environ. Microbiol. 2019;21(9):3259-3268. https://doi.org/10.1111/1462-2920.14347.
27. Versace E., Nolte V., Pandey R.V., Tobler R., Schlötterer C. Experimental evolution reveals habitat-specific fitness dynamics among Wolbachia clades in Drosophila melanogaster. Mol. Ecol. 2014;23(4): 802-814. https://doi.org/10.1111/mec.12643.
28. Verspoor R.L., Haddrill P.R. Genetic diversity, population structure and Wolbachia infection status in a worldwide sample of Drosophila melanogaster and D. simulans populations. PLoS One. 2011;6(10): e26318. https://doi.org/10.1371/journal.pone.0026318.
29. Woolfit M., Iturbe-Ormaetxe I., Brownlie J.C., Walker T., Riegler M., Seleznev A., Popovici J., Rances E., Wee B.A., Pavlides J., Sullivan M.J., Beatson S.A., Lane A., Sidhu M., McMeniman C.J., McGraw E.A., O’Neill S.L. Genomic evolution of the pathogenic Wolbachia strain, wMelPop. Genome Biol. Evol. 2013;5(11):2189-2204. https://doi.org/10.1093/gbe/evt169.
30. Xue L., Fang X., Hyman J.M. Comparing the effectiveness of different strains of Wolbachia for controlling chikungunya, dengue fever, and Zika. PLoS Negl. Trop. Dis. 2018;12(7):e0006666. https://doi.org/10.1371/journal.pntd.0006666.