Rare Wolbachia genotypes in laboratory Drosophila melanogaster strains
https://doi.org/10.18699/VJGB-22-67
Abstract
Symbiotic bacteria of the genus Wolbachia are widespread in Drosophila melanogaster populations. Based on the polymorphism of the Wolbachia genome, the symbionts’ diversity in D. melanogaster is presented by two groups: MEL (wMel, wMel2, wMel3 and wMel4) and CS (wMelCS and wMelCS2). The wMel genotype is predominant in natural D. melanogaster populations and is distributed all over the world. The CS genotypes, on the other hand, are of particular interest because it is unclear how they are maintained in the fruit f ly populations since they should have been eliminated from them due to their low frequency and genetic drift or been replaced by the wMel genotype. However, this is not what is really observed, which means these genotypes are supported by selection. It is known that the wMelPlus strain of the wMelCS genotype can increase the lifespan of infected f lies at high temperatures. The same genotype also increases the intensity of dopamine metabolism in Drosophila compared to the MEL-group genotypes. In the present study, we searched for the rare Wolbachia wMelCS and wMelCS2 genotypes, as well as for new genotypes in wild-type D. melanogaster strains and in several mutant laboratory strains. The symbiont was found in all populations, in 200 out of 385 wild-type strains and in 83 out of 170 mutant strains. Wolbachia diversity in D. melanogaster wild-type strains was represented by the wMel, wMelCS and wMelCS2 genotypes. More than 90 % of the infected strains carried wMel; 9 %, wMelCS2; and only two strains were found to carry wMelCS. No new Wolbachia genotypes were found. The northernmost point reported for the wMelCS2 genotype was Izhevsk city (Udmurtia, Russia). For the f irst time the wMelCS2 genotype was detected in D. melanogaster from the Sakhalin Island, and wMelCS, in the f lies from Nalchik (the North Caucasus). A comparison of Wolbachia genetic diversity between the wild-type laboratory strains and previously obtained data on mutant laboratory strains demonstrated differences in the frequencies of rare CS genotypes, which were more prevalent in mutant strains, apparently due to the breeding history of these Drosophila strains.
About the Authors
A. S. RyabininRussian Federation
Novosibirsk
O. D. Shishkina
Russian Federation
Novosibirsk
Yu. Yu. Ilinsky
Russian Federation
Novosibirsk
R. A. Bykov
Russian Federation
Novosibirsk
References
1. Arnold P.A., Levin S.C., Stevanovic A.L., Johnson K.N. Drosophila melanogaster infected with Wolbachia strain wMelCS prefer cooler temperatures. Ecol. Entomol. 2019;44(2):287-290. DOI 10.1111/een.12696.
2. Burdina E.V., Bykov R.A., Menshanov P.N., Ilinsky Y.Y., Gruntenko N.Е. Unique Wolbachia strain wMelPlus increases heat stress resistance in Drosophila melanogaster. Arch. Insect Biochem. Physiol. 2021;106(4):e21776. DOI 10.1002/arch.21776.
3. Bykov R.A., Ilinskii Yu.Yu., Voloshina M.A., Zakharov I.K. Prevalence and genotypic diversity of the symbiotic bacterium Wolbachia in the Drosophila melanogaster population of Nalchik. Russ. J. Genet. Appl. Res. 2014;4:539-542. https://doi.org/10.1134/S2079059714060057.
4. Bykov R.А., Yudina M.A., Gruntenko N.E., Zakharov I.K., Voloshina M.A., Melashchenko E.S., Danilova M.V., Mazunin I.O., Ilinsky Y.Y. Prevalence and genetic diversity of Wolbachia endosymbiont and mtDNA in Palearctic populations of Drosophila melanogaster. BMC Evol. Biol. 2019;19(1):45-53. DOI 10.1186/s12862-019-1372-9.
5. Chrostek E., Marialva M.S., Esteves S.S., Weinert L.A., Martinez J., Jiggins F.M., Teixeira L. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet. 2013;9(12):e1003896. DOI 10.1371/journal.pgen.1003896.
6. Clark M.E., Anderson C.L., Cande J., Karr T.L. Widespread prevalence of Wolbachia in laboratory stocks and the implications for Drosophila research. Genetics. 2005;170(4):1667-1675. DOI 10.1534/genetics.104.038901.
7. Early A.M., Clark A.G. Monophyly of Wolbachia pipientis genomes within Drosophila melanogaster: geographic structuring, titre variation and host effects across five populations. Mol. Ecol. 2013; 22(23):5765-5778. DOI 10.1111/mec.12530.
8. Flores H.A., Taneja de Bruyne J., O’Donnell T.B., Tuyet Nhu V., Thi Giang N., Thi Xuan Trang H., … Thi Hue Kien D., Thuy Vi T., Willis B., O’Neill S.L., Simmons C.P., Carrington L.B. Multiple Wolbachia strains provide comparative levels of protection against dengue virus infection in Aedes aegypti. PLoS Pathog. 2020;16(4): e1008433. DOI 10.1371/journal.ppat.1008433.
9. Gruntenko N.Е., Ilinsky Y.Y., Adonyeva N.V., Burdina E.V., Bykov R.A., Menshanov P.N., Rauschenbach I.Y. Various Wolbachia genotypes differently influence host Drosophila dopamine metabolism and survival under heat stress conditions. BMC Evol. Biol. 2017;17(2):15-22. DOI 10.1186/s12862-017-1104-y.
10. Hedges L.M., Brownlie J.C., O’Neill S.L., Johnson K.N. Wolbachia and virus protection in insects. Science. 2008;322(5902):702. DOI 10.1126/science.1162418.
11. Hoffmann A.A., Clancy D.J., Merton E. Cytoplasmic incompatibility in Australian populations of Drosophila melanogaster. Genetics. 1994; 136(3):993-999. DOI 10.1093/genetics/136.3.993.
12. Hoffmann A.A., Hercus M., Dagher H. Population dynamics of the Wolbachia infection causing cytoplasmic incompatibility in Drosophila melanogaster. Genetics. 1998;148(1):221-231. DOI 10.1093/genetics/148.1.221.
13. Ilinsky Y. Coevolution of Drosophila melanogaster mtDNA and Wolbachia genotypes. PLoS One. 2013;8(1):e54373. DOI 10.1371/journal.pone.0054373.
14. Ilinsky Y.Y., Bykov R.A., Zakharov I.K. Cytotypes of mutant Drosophila melanogaster stocks from the collection of the genetics of population laboratory of the Institute of Cytology and Genetics SB RAS: genotypes of the Wolbachia endosymbiont and host mitotypes. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2014;17(3):404-423. (in Russian)
15. Ilinsky Yu.Yu., Zakharov I.K. The endosymbiont Wolbachia in Eurasian populations of Drosophila melanogaster. Russ. J. Genet. 2007a;43(7):748-756. DOI 10.1134/S102279540707006X.
16. Ilinsky Yu.Yu., Zakharov I.K. Infection of the Uman’ population of Drosophila melanogaster with the cytoplasmic endosymbiont Wolbachia. Dokl. Biol. Sci. 2007b;413(1):166-168. DOI 10.1134/S0012496607020238.
17. Ilinsky Yu.Yu., Zakharov I.K. Cytoplasmic incompatibility in Drosophila melanogaster is caused by different Wolbachia genotypes. Russ. J. Genet. Appl. Res. 2011;1(5):458-462. DOI 10.1134/S2079059711020031.
18. Kriesner P., Conner W.R., Weeks A.R., Turelli M., Hoffmann A.A. Persistence of a Wolbachia infection frequency cline in Drosophila melanogaster and the possible role of reproductive dormancy. Evolution. 2016;70(5):979-997. DOI 10.1111/evo.12923.
19. Mazzucco R., Nolte V., Vijayan T., Schlötterer C. Long-term dynamics among Wolbachia strains during thermal adaptation of their Drosophila melanogaster hosts. Front. Genet. 2020;11:482. DOI 10.3389/fgene.2020.00482.
20. Min K.T., Benzer S. Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc. Natl. Acad. Sci. USA. 1997;94(20):10792-10796. DOI 10.1073/pnas.94.20.10792
21. Richardson M.F., Weinert L.A., Welch J.J., Linheiro R.S., Magwire M.M., Jiggins F.M., Bergman C.M. Population genomics of the Wolbachia endosymbiont in Drosophila melanogaster. PLoS Genet. 2012;8(12):e1003129. DOI 10.1371/journal.pgen.1003129.
22. Riegler M., Sidhu M., Miller W.J., O’Neill S.L. Evidence for a global Wolbachia replacement in Drosophila melanogaster. Curr. Biol. 2005;15(15):1428-1433. DOI 10.1016/j.cub.2005.06.069.
23. Schultz M.J., Isern S., Michael S.F., Corley R.B., Connor J.H., Frydman H.M. Variable inhibition of Zika virus replication by different Wolbachia strains in mosquito cell cultures. J. Virol. 2017;91(14): e00339-17. DOI 10.1128/JVI.00339-17.
24. Serga S., Maistrenko O., Rozhok A., Mousseau T., Kozeretska I. Fecundity as one of possible factors contributing to the dominance of the wMel genotype of Wolbachia in natural populations of Drosophila melanogaster. Symbiosis. 2014;63(1):11-17. DOI 10.1007/s13199-014-0283-1.
25. Teixeira L., Ferreira Á., Ashburner M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 2008;6(12):e1000002. DOI 10.1371/journal.pbio.1000002.
26. Truitt A.M., Kapun M., Kaur R., Miller W.J. Wolbachia modifies thermal preference in Drosophila melanogaster. Environ. Microbiol. 2019;21(9):3259-3268. DOI 10.1111/1462-2920.14347.
27. Versace E., Nolte V., Pandey R.V., Tobler R., Schlötterer C. Experimental evolution reveals habitat-specific fitness dynamics among Wolbachia clades in Drosophila melanogaster. Mol. Ecol. 2014;23(4): 802-814. DOI 10.1111/mec.12643.
28. Verspoor R.L., Haddrill P.R. Genetic diversity, population structure and Wolbachia infection status in a worldwide sample of Drosophila melanogaster and D. simulans populations. PLoS One. 2011;6(10): e26318. DOI 10.1371/journal.pone.0026318.
29. Woolfit M., Iturbe-Ormaetxe I., Brownlie J.C., Walker T., Riegler M., Seleznev A., Popovici J., Rances E., Wee B.A., Pavlides J., Sullivan M.J., Beatson S.A., Lane A., Sidhu M., McMeniman C.J., McGraw E.A., O’Neill S.L. Genomic evolution of the pathogenic Wolbachia strain, wMelPop. Genome Biol. Evol. 2013;5(11):2189-2204. DOI 10.1093/gbe/evt169.
30. Xue L., Fang X., Hyman J.M. Comparing the effectiveness of different strains of Wolbachia for controlling chikungunya, dengue fever, and Zika. PLoS Negl. Trop. Dis. 2018;12(7):e0006666. DOI 10.1371/journal.pntd.0006666.