Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Metabolomic profiles of Ribes nigrum L. and Lonicera caerulea L. from the collection of the N.I. Vavilov Institute in the setting of Northwest Russia

https://doi.org/10.18699/VJGB-22-77

Abstract

Recently, the trend of using fruit and berry crops as ingredients for functional and dietary nutrition, the development and implementation of flavors, pigments, new medicines and dietary supplements has been actualized. Because the direction of use depends on the biochemical properties of fruits, which are determined not only by species and varietal characteristics, but also by reproduction conditions, the study of the biochemical composition of fruits grown in various regions of the world continues to be relevant. In this regard, the collection of N.I. Vavilov Institute (VIR), which has a wide diversity of fruit and berry crops, is of great interest for study. Ribes nigrum fruits have a balanced set of sugars, organic acids, essential oils, microelements, a high content of vitamins, anthocyanins, pectins. Lonicera caerulea fruits are characterized by high values of phenolic substances: bioflavonoids, hydroxycinnamic acids, flavonols, polyphenols, anthocyanins, as well as vitamins, carotenoids, iridoid glycosides and other natural antioxidants. The investigation of L. caerulea and R. nigrum fruit’s accessions from the VIR collection using gas-liquid chromatography with mass spectrometry allows us to obtain new information about the biochemical characteristics of fruits, to identify L. caerulea and R. nigrum varieties with optimal economically valuable characteristics, to determine the specificity of L. caerulea and R. nigrum metabolomic spectra in the setting of Northwest Russia. As a result of the analysis, typical compounds of the metabolomic profile of each culture were identified. Organic acids, phenol-containing compounds and polyols prevailed in L. caerulea, while mono- and oligosaccharides, in R. nigrum. The qualitative composition of the black currant varieties ‘Malen’kii Printz’, ‘Dobriyi Dzhinn’, ‘Tisel’, ‘Orlovskii Val’s’, and blue honeysuckle ‘S 322-4’, ‘Malvina’, ‘Leningradsky Velikan’ was optimal for food consumption; the varieties of blue honeysuckle ‘Bazhovskaya’ and black currant ‘Aleander’ had a good representation of biologically active compounds, which makes samples attractive as raw materials for the production of biologically active additives, including with the use of microorganisms’ cultures.

About the Authors

T. V. Shelenga
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



V. S. Popov
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



A. V. Konarev
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



N. G. Tikhonova
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



O. A. Tikhonova
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



Y. A. Kerv
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



A. E. Smolenskaya
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



L. L. Malyshev
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



References

1. Dudnik A., Almeida A.F., Andrade R., Avila B., Bañados P., Barbay D., Bassard J.E., Benkoulouche M., Bott M., Braga A., … Vogt M., Wang L., Wang L., Wei W., Youssef S., Neves A.R., Forster J. BacHBerry: BACterial Hosts for production of Bioactive phenolics from bERRY fruits. Phytochem. Rev. 2018;17:291-326. DOI:10.1007/s11101-017-9532-2.

2. Gołba M., Sokół-Łętowska A., Kucharska A.Z. Health properties and composition of honeysuckle berry Lonicera caerulea L. an update on recent studies. Molecules. 2020;25(3):749. DOI:10.3390/molecules25030749.

3. Juríková T., Mlček J., Žitná M., Hlaváčová I., Dokoupil L., Sochor J., Ercisli S., Ozkan G. Fruit maturity stage in relation to content of polyphenols, flavonoids and antioxidant activity of selected clones of Lonicera kamtschatica (Sevast.) Pojark. Genetika. 2020;52(3): 881-893. DOI:10.2298/GENSR2003881J.

4. Knyazev S.D., Ogoltsova T.P. Current State of Black Currant Breeding. Orel, 2004. (in Russian)

5. Konarev A.V., Khoreva V.I. Biochemical Studies of Plant Genetic Resources at VIR. St. Petersburg, 2000. (in Russian)

6. Kylli P. Berry phenolics: isolation, analysis, identification, and antioxidant properties: Academic dissertation, University of Helsinki department of food and environmental sciences food chemistry. Helsinki, 2011.

7. Lee H.J., Suh D.H., Jung E.S., Park H.M., Jung G.Y., Do S.G., Lee C.H. Metabolomics of Lonicera caerulea fruit during ripening and its relationship with color and antioxidant activity. Food Res. Int. 2015;78:343-351. DOI:10.1016/j.foodres.2015.09.017.

8. Mattila P.H., Hellström J., Karhu S., Pihlava J.-M., Veteläinen M. High variability in flavonoid contents and composition between different North-European currant (Ribes spp.) varieties. Food Chem. 2016;204:14-20. DOI:10.1016/j.foodchem.2016.02.056.

9. Perchuk I., Shelenga T., Gurkina M., Miroshnichenko E., Burlyaeva M. Composition of primary and secondary metabolite compounds in seeds and pods of asparagus bean (Vigna unguiculata (L.) Walp.) from China. Molecules. 2020;25:3778. DOI:10.3390/molecules25173778.

10. Pikunova A.V., Martirosyan E.V., Knyazev S.D., Ryzhova N.N. Molecular analysis of genetic polymorphism and phylogenetic relationships in Ribes L. Ekologicheskaya Genetika = Ecological Genetics. 2011;9(2):34-44. DOI:10.17816/ecogen9234-44. (in Russian)

11. Plekhanova M.N. Promising varieties and forms of honeysuckle for breeding and production. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 1992;146:120-125. (in Russian)

12. Plekhanova M.N. Blue honeysuckle (Lonicera сaerulea L.) – a new commercial berry crop for temperate climate: genetic resources and breeding. Acta Hortic. 2000;538:159-164. DOI:10.17660/ActaHortic.2000.538.25.

13. Plekhanova M.N. On the species composition of the blue honeysuckle subsection Lonicera subsect. caeruleae (Fam. Caprifoliaceae). Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2007;161:57-68. (in Russian)

14. Plekhanova M.N., Streltsyna S.A. Fruit chemical composition of Lonicera subsect. caerulea (Caprifoliaceae) species. Genetic Resourses in Russia and Neighbouring Countries Forestry Studies. Tartu: Estonian Agricultural University – Forest Research Institute, 1998;30: 143-146.

15. Puzanskiy R., Tarakhovskaya E., Shavarda A., Shishova M. Metabolomic and physiological changes of Chlamydomonas reinhardtii (Chlorophyceae, Chlorophyta) during batch culture development. J. Appl. Phycol. 2018;30(2):803-818. DOI:10.1007/s10811-017-1326-9.

16. Rop O., Řezníček V., Mlček J., Juríková T., Balík J., Sochor J., Kramářová D. Antioxidant and radical oxygen species scavenging activities of 12 cultivars of blue honeysuckle fruit. Hort. Sci. 2011; 38:63-70. DOI:10.17221/99/2010-HORTSCI.

17. Sedova E.N., Ogoltsova T.P. (Eds.) Program and Methodology for Sorting Fruit, Berry, and Nut Crops. Orel, 1999. (in Russian)

18. Senica M., Stampar F., Mikulic-Petkovsek M. Blue honeysuckle (Lonicera cearulea L. subs. edulis) berry: a rich source of some nutrients and their differences among four different cultivars. Hort. Sci. 2018;238:215-221. DOI:10.1016/j.scienta.2018.04.056.

19. Shtark O.Y., Puzanskiy R.K., Avdeeva G.S., Yurkov A.P., Smolikova G.N., Yemelyanov V.V., Kliukova M.S., Shavarda A.L., Kirpichnikova A.A., Zhernakov A.I., Afonin A.M., Tikhonovich I.A., Zhukov V.A., Shishova M.F. Metabolic alterations in pea leaves during arbuscular mycorrhiza development. PeerJ. 2019;7:1-33. DOI:10.7717/peerj.7495.

20. Sochor J., Jurikova T., Pohanka M., Skutkova H., Baron M., Tomaskova L., Balla S., Klejdus B., Pokluda R., Mlcek J., Trojakova Z., Saloun J. Evaluation of antioxidant activity, polyphenolic compounds, amino acids and mineral elements of representative genotypes of Lonicera edulis. Molecules. 2014;19(5):6504-6523. DOI:10.3390/molecules19056504.

21. Streltsina S.A., Plekhanova M.N., Tikhonova O.A., Pupkova N.A., Arsenyeva T.V. Comparative evaluation of cultivars and wild species of berry crops (honeysuckle, black and red currants, gooseberries) according to the spectrum of biologically active phenolic compounds. Plodovodstvo i Yagodovodstvo Rossii = Pomiculture and Small Fruits Culture in Russia. 2005;12:231-247. (in Russian)

22. Streltsina S.A., Plekhanova M.N., Tikhonova O.A., Sabitov A.Sh., Arsenyeva T.V., Pupkova N.A. Comparative assessment of wild smallfruit species according to the composition and content of bioactive phenol compounds. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2007;161:155-162. (in Russian)

23. Streltsina S.A., Sorokin A.A., Plekhanova M.N., Lobanova E.V. The spectrum of biologically active phenolic compounds in honeysuckle varieties in the northwestern fruit-growing zone of the Russian Federation. Agrarnaya Rossiya = Agricultural Russia. 2006;6:67-72. (in Russian)

24. Streltsina S.A., Tikhonova O.A. Nutrients and biologically active substances in berries and leaves of black currant (Ribis nigrum L.) in Northwest Russia. Agrarnaya Rossiya = Agricultural Russia. 2010; 1:24-31. (in Russian)

25. Thole V., Breitel D., Hill L., Vain P., Martin C., Bassard J.E., RamírezGonzález R., Ghasemi Afshar B., Trick M., Foito A., Shepherd L., Freitag S., Stewart D., Nunes Dos Santos C., Menezes R., Banãdos P., Naesby M., Wang L., Sorokin A., Tikhonova O., Shelenga T. RNA-seq, de novo transcriptome assembly and flavonoid gene analysis in 13 wild and cultivated berry fruit species with high content of phenolics. BMC Genom. 2019;20:995. DOI:10.1186/s12864-019-6183-2.

26. Tian Y., Laaksonen O., Haikonen H., Vanag A., Ejaz H., Linderborg K., Karhu S., Yang B. Compositional diversity among blackcurrant (Ribes nigrum) cultivars originating from European countries. J. ­ Agric. Food Chem. 2019;67(19):5621-5633. DOI:10.1021/acs.jafc.9b00033.

27. Tikhonova O.A., Shelenga T.V., Streltsina S.A. Biochemical composition of black currant berries in Northwest Russia. Selektsiya i Sortorazvedeniye Sadovykh Kul’tur = Breeding and Variety Cultivation of Horticultural Crops. 2015;2:203-206. (in Russian)

28. Tikhonova O.A., Streltsina S.A. Nutrient contents in blackcurrant berries in Northwest Russia. Plodovodstvo i Yagodovodstvo Rossii = Pomiculture and Small Fruits Culture in Russia. 2009;22(2):303-310. (in Russian)

29. Tikhonova O.A., Streltsina S.A. Phenolic compounds in black currant leaves with regard to resistance to American powdery mildew (Sphaerotheca morsuvae (Schw.) Berk. et Curt.). Plodovodstvo i Yagodovodstvo Rossii = Pomiculture and Small Fruits Culture in Russia. 2012;34(2):292-299. (in Russian)

30. Vitkovsky V.L. Fruit Plants of the World. St. Petersburg, 2003. (in Russian) WorleyB.,PowersR.Multivariate analysisinmetabolomics.Curr. Metabolomics. 2013;1(1):92-107. DOI:10.2174/2213235X11301010092.


Review

Views: 576


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)