Identification of apple genes Md-Exp7 and Md-PG1 alleles in advanced selections resistant to scab
https://doi.org/10.18699/VJGB-22-79
Abstract
The creation of apple varieties with a high level of flesh firmness and long shelf life is one of the important goals in breeding. Among the genes controlling these traits, the role of the endogenous ethylene biosynthesis control gene, Md-ACS1, the expansin gene, Md-Exp7, and the polygalacturonase gene, Md-PG1, has been established. The use of DNA marker analysis to solve problems in breeding for fruit quality traits allows one not only to track several target genes simultaneously, but also to cull plants with undesirable alleles at the early stages of development. In order to select complex donors of breeding traits, molecular genetic identification of the genes that determine the quality traits of apple fruits Md-Exp7 and Md-PG1 was performed in 256 breeding selections carrying the scab resistance gene Rvi6 and valuable allelic variants of the Md-ACS-1 gene, which determines the endogenous synthesis of ethylene in fruits: 90 samples with the Md-ACS1 allele (2/2) and 166 samples with Md-ACS1 (1/2). As a result of the study, an allelic combination for the Md-Exp7 and Md-PG1 genes was established. Analysis of the parental cultivars (Renet Simirenko, Modi, Smeralda, Renoir, Fulzhion and Granny Smith) used to obtain hybrid selections revealed three alleles 198, 202, 214 bp according to the DNA marker of the Md-Exp7 gene. The SSR marker for the Md-PG1 gene amplified three alleles (289, 292, 298 bp) on the abovementioned cultivars. Within the 256 breeding selections samples that have the most priority for breeding alleles of the desired genes in combination with the Rvi6 gene and/or with selection-priority allelic variants of the Md-ACS-1 gene were identified. Of the most valuable for breeding, 46 accessions carrying the combination Md-Exp7 (202:202) + Md-ACS1 (2/2) were distinguished. Hybrids with alleles Md-PG1 (292:292) + Md-ACS1 (2/2) are also most valuable for use in breeding and as donors of selection-valuable alleles; 21 samples were identified. Accessions with a complex of breeding-valuable target alleles are valuable complex donors, as well as valuable breeding material for creating varieties with improved fruit quality characteristics and scab resistance.
Keywords
About the Authors
I. I. SuprunRussian Federation
Krasnodar
S. V. Tokmakov
Russian Federation
Krasnodar
E. A. Al-Nakib
Russian Federation
Krasnodar
E. V. Lobodina
Russian Federation
Krasnodar
References
1. Bai S., Wang A., Igarashi M., Kon T., Fukasawa-Akada T., Li T., Harada T., Hatsuyama Y. Distribution of MdACS3 null alleles in apple (Malus × domestica Borkh.) and its relevance to the fruit ripening characters. Breed. Sci. 2012;62(1):46-52. DOI:10.1270/jsbbs.62.46.
2. Brummell D.A., Harpster M.H. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol. Biol. 2001;47(1-2):311-340. DOI:10.1023/A:1010656104304.
3. Chagné D., Vanderzande S., Kirk C., Profitt N., Weskett R., Gardiner S.E., Peace C.P., Volz R.K., Bassil N.V. Validation of SNP markers for fruit quality and disease resistance loci in apple (Malus × domestica Borkh.) using the OpenArray® platform. Hort. Res. 2019; 6:30. DOI:10.1038/s41438-018-0114-2.
4. Cosgrove D.J. Loosening of plant cell walls by expansins. Nature. 2000;407(6802):321-326. DOI:10.1038/35030000.
5. Costa F., Peace C.P., Stella S., Serra S., Musacchi S., Bazzani M., Sansavini S., Van de Weg W.E. QTL dynamics for fruit firmness and softening around an ethylene-dependent polygalacturonase gene in apple (Malus × domestica Borkh.). J. Exp. Bot. 2010;61(11):30293039. DOI:10.1093/jxb/erq130.
6. Costa F., Sara S., Van de Weg W.E., Guerra W., Cecchinel M., Dallivina J., Koller B., Sansavini S. Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh). Euphytica. 2005;141:181-190. DOI:10.1007/s10681-005-6805-4.
7. Costa F., Van de Weg W.E., Stella S., Dondini L., Pratesi D., Musacchi S., Sansavini S. Map position and functional allelic diversity of Md-Exp7, a new putative expansin gene associated with fruit softening in apple (Malus × domestica Borkh.) and pear (Pyrus communis). Tree Genet. Genomes. 2008;4:575-586. DOI:10.1007/s11295008-0133-5.
8. Dolzhikova M.A., Pikunova A.V., Tolpekina A.A., Sedov E.N. Allelic diversity of the gene for ethylene-dependent polygalacturonase Md-PG1 in the new hybrid gene pool of apple (Malus Mill.) VNIISPK. In: Biotechnology in Crop Production, Animal Husbandry, and Agricultural Microbiology: Abstracts from the 20th AllRussia Conference of Young Scientists (Moscow, October 27–29, 2020). Moscow: All-Russia Research Institute for Agricultural Biotechnology, 2020;97-99. DOI:10.48397/ARRIAB.2020.20.056. (in Russian)
9. Dong J.G., Kim W.T., Yip W.K., Thompson G.A., Li L., Bennett A.B., Yang S.F. Cloning of a cDNA encoding 1-aminocyclopropane-1-carboxylate synthase and expression of its mRNA in ripening apple fruit. Planta. 1991;185(1):38-45. DOI:10.1007/BF00194512.
10. Dong J.G., Olson D., Silverstone A., Yang S.F. Sequence of a cDNA coding for a 1-aminocyclopropane-1-carboxylate oxidase homolog from apple fruit. Plant Physiol. 1992;98(4):1530-1531. DOI:10.1104/pp.98.4.1530.
11. Dougherty L., Zhu Y., Xu K. Assessing the allelotypic effect of two aminocyclopropane carboxylic acid synthase-encoding genes MdACS1 and MdACS3a on fruit ethylene production and softening in Malus. Hort. Res. 2016;3:16024. DOI:10.1038/hortres.2016.24.
12. Ji Y., Wang A. Recent advances in phytohormone regulation of applefruit ripening. Plants. 2021;10(10):2061. DOI:10.3390/plants10102061.
13. Kende H. Ethylene biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1993;44(1):283-307. DOI:10.1146/annurev.pp.44.060193.001435.
14. Kwon Y.S., Kwon S.I., Kim J.H., Park M.Y., Park J.T., Kim S.A. Validation assay of Md-ACS1, Md-ACO1, and Md-PG1 molecular markers associated with storability in apples. Korean J. Breed. Sci. 2020;52(4):322-331. DOI:10.9787/KJBS.2020.52.4.322.
15. Longhi S., Cappellin L., Guerra W., Costa F. Validation of a functional molecular marker suitable for marker-assisted breeding for fruit texture in apple (Malus domestica Borkh.) Mol. Breed. 2013a;32: 841-852. DOI:10.1007/s11032-013-9912-2.
16. Longhi S., Hamblin M.T., Trainotti L., Peace C.P., Velasco R., Costa F. A candidate gene based approach validates MdPG1 as the main responsible for a QTL impacting fruit texture in apple (Malus × domestica Borkh.). BMC Plant Biol. 2013b;13:37. DOI:10.1186/14712229-13-37.
17. Lyzhin A.S., Savelyeva N.N. Molecular analysis of the ethylene biosynthesis genes Md-ACS1 and Md-ACO1 in hybrid apple seedlings. Nauchnyye Trudy SKFNCSVV = Scientific Works of the North Caucasian Federal Center for Horticulture, Viticulture, and Wine Making. 2020;30:9-14. DOI:10.30679/2587-9847-2020-30-9-14. (in Russian)
18. Murray M.G., Thompson W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980;8(19):4321-4325.
19. Nybom H., Ahmadi-Afzadi M., Garkava-Gustavsson L., Sehic J. Selection for improved fruit texture and storability in apple. Acta Hortic. 2012;934:849-854. DOI:10.17660/ActaHortic.2012.934.112.
20. Nybom H., Ahmadi-Afzadi M., Sehic J., Hertog M. DNA marker-assisted evaluation of fruit firmness at harvest and post-harvest fruit softening in a diverse apple germplasm. Tree Genet. Genomes. 2013;9:279-290. DOI:10.1007/s11295-012-0554-z.
21. Oraguzie N.C., Iwanami H., Soejima J., Harada T., Hall A. Inheritance of the Md-ACS1 gene and its relationship to fruit softening in apple (Malus × domestica Borkh.). Theor. Appl. Genet. 2004;108(8):15261533. DOI:10.1105/tpc.17.00349.
22. Oraguzie N.C., Volz R.K., Whitworth C.J., Bassett H.C.M., Hall A.J., Gardiner S. Influence of Md-ACS1 allelotype and harvest season within an apple germplasm collection on fruit softening during cold air storage. Postharvest Biol. Technol. 2007;44(3):212-219. DOI:10.1016/j.postharvbio.2006.12.013.
23. Prichko T.G. Apple Harvesting Terms and Storage Modes Taking into Account Varietal Features. Krasnodar: North Caucasian Federal Center for Horticulture, Viticulture, and Wine Making, 2018. (in Russian)
24. Prichko T.G., Smelik T.L., Germanova M.G. Preservation of apple fruit quality indicators with regard to varietal features and medium composition in a controlled atmosphere. Nauchnyye Trudy SKFNCSVV = Scientific Works of the North Caucasian Federal Center for Horticulture, Viticulture, and Wine Making. 2019;23: 253-258. DOI:10.30679/2587-9847-2019-23-259-263. (in Russian)
25. Savel’ev N.I., Shamshin I.N., Kudryavtsev F.M. Apple for the alleles of genes of shelf life and quality of fruits. Doklady Rossiyskoy Akademii Sel’skokhozyaystvennykh Nauk = Proceedings of the Russian Academy of Agricultural Sciences. 2014a;3:17-20. (in Russian)
26. Savel’ev N.I., Shamshin I.N., Savel’eva N.N., Lyzhin A.S. Polymorphism for the Md-Exp-7 gene for expansin biosynthesis in wild species of the genus Malus Mill. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2014b;18(4/1): 713-717. (in Russian)
27. Savelyeva N.N., Lyzhin A.S. Biosynthesis of ethylene (Md-ACS1 and Md-ACO1 genes) and expansin (Md-Exp7 gene) in the genoplasma of apple varieties and forms bred at the Michurin Federal Scientific Center. In: Agroecological Aspects of Sustainable Development of the Agro-industrial Complex: Proceedings of the XVI Int. sci. conf. Bryansk: Bryansk State Agrarian University, 2019;762-766. (in Russian)
28. Shamshin I.N., Shlyavas A.V., Trifonova A.A., Boris K.V., Kudryavtsev A.M. Ethylene and expansin biosynthesis related genes polymorphism in local apple (Malus domestica Borkh.) cultivars from VIR Collection of plant genetic resources. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(6):660-666. DOI:10.18699/VJ18.408.
29. Shamshin I.N., Telezhinsky D.D., Shlyavas A.V. Evaluation of apple varieties of the Sverdlovsk horticultural breeding station according to the ethylene biosynthesis genes using molecular markers. Agrarnaya Nauka Evro-Severo-Vostoka = Agricultural Science of the Euro-North-East. 2020;21(6):706-712. DOI:10.30766/20729081.2020.21.6.706-712. (in Russian)
30. Sunako T., Sakuraba W., Senda M., Akada S., Ishikawa R., Niizeki M., Harada T. An allele of the ripening-specific 1-aminocyclopropane1-carboxylic acid synthase gene (ACS1) in apple fruit with a long storage life. Plant Physiol. 1999;119(4):1297-304. DOI:10.1104/pp.119.4.1297.
31. Suprun I.I., Nasonov A.I., Lobdina E.V., Volodina E.A. An integrated approach to creating scab-resistant apple: phytopathological testing and marker-assisted selection. Biotehnologiâ i Selekciâ Rastenij = Plant Biotechnology and Breeding. 2018;1(1):25-33. DOI:10.30901/2658-6266-2018-1-25-33. (in Russian)
32. Suprun I.I., Tokmakov S.V. Allelic diversity of ethylene biosynthesisrelated Md-ACS1 and Md-ACO1 genes in the Russian apple germplasm. Russ. J. Genet.: Appl. Res. 2013;6:451-454. DOI:10.1134/S2079059713060105.
33. Zhu Y., Barritt B.H. Md-ACS1 and Md-ACO1 genotyping of apple (Malus × domestica Borkh.) breeding parents and suitability for marker-assisted selection. Tree Genet. Genomes. 2008;4:555-562. DOI:10.1007/s11295-007-0131-z.