Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Genome variability of domestic tomato varieties: data from AFLP analysis

https://doi.org/10.18699/VJGB-22-80

Abstract

Tomato Solanum lycopersicum L. is one of the main vegetable crops, accessions and cultivars of which are characterized by a low level of genomic polymorphism. Introgressive tomato breeding uses related wild Solanum species to improve cultivars for stress tolerance and fruit quality traits. The aim of this work was to evaluate the genome variability of 59 cultivars and perspective breeding lines of S. lycopersicum and 11 wild tomato species using the AFLP method. According to the AFLP analysis, four combinations of primers E32/M59, E32/M57, E38/M57, and E41/M59, which had the highest PIC (polymorphism information content) values, were selected. In the process of genotyping a collection of 59 cultivars/lines of S. lycopersicum and 11 wild tomato accessions, the selected primers revealed 391 fragments ranging in size from 80 to 450 bp, of which 114 fragments turned out to be polymorphic and 25 were unique. Analysis of the amplification spectra placed wild tomato accessions into separate clades. Sister clades included cultivars of FSCV breeding resistant to drought and/or cold and, in part, to late blight, Alternaria, Septoria, tobacco mosaic virus and blossom end rot, as well as tomato accessions not characterized according to these traits, which suggests that they have resistance to stress factors. In accessions of distant clades, there was clustering on the basis of resistance to Verticillium, cladosporiosis, Fusarium, tobacco mosaic virus, gray rot, and blossom end rot. The combination of accessions according to their origin from the originating organization was shown. The primer combinations E32/M59, E32/M57, E38/M57 and E41/M59 were shown to be perspective for genotyping tomato cultivars to select donors of resistance to various stress factors. The clade-specific fragments identified in this work can become the basis for the development of AFLP markers for traits of resistance to stress factors.

About the Authors

A. V. Kulakova
Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences
Russian Federation

Moscow



E. A. Dyachenko
Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences
Russian Federation

Moscow



A. V. Shchennikova
Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences
Russian Federation

Moscow



O. N. Pyshnaya
Federal Scientific Vegetable Center,
Russian Federation

VNIISSOK, Moscow region



E. A. Dzhos
Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences; Federal Scientific Vegetable Center,
Russian Federation

Moscow
VNIISSOK, Moscow region



References

1. Arif I.A., Bakir M.A., Khan H.A., Al Farhan A.H., Al Homaidan A.A., Bahkali A.H., Sadoon M.A., Shobrak M. A brief review of molecular techniques to assess plant diversity. Int. J. Mol. Sci. 2010;11(5): 2079-2096. DOI:10.3390/ijms11052079.

2. Bamberg J.B., del Rio A.H. Selection and validation of an AFLP marker core collection for the wild potato Solanum microdontum. Am. J. Potato Res. 2014;91:368-375. DOI:10.1007/s12230-013-9357-5.

3. Bita C.E., Zenoni S., Vriezen W.H., Mariani C., Pezzotti M., Gerats T. Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants. BMC Genomics. 2011;12:384. DOI:10.1186/1471-2164-12-384.

4. Botstein D., White R.L., Skolnick M., Davis R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980;32(3):314-331.

5. Bryan G.J., McLean K., Waugh R., Spooner D.M. Levels of intra-specific AFLP diversity in tuber-bearing potato species with different breeding systems and ploidy levels. Front. Genet. 2017;8:119. DOI:10.3389/fgene.2017.00119.

6. Chellemi D.O., Dankers H.A., Olson S.M., Hodge N.C., Scott J.W. Evaluating bacterial wilt-resistant tomato genotypes using a regional approach. J. Am. Soc. Hortic. Sci. 1994;119(2):325-329. DOI:10.21273/JASHS.119.2.325.

7. Despres L., Gielly L., Redoutet B., Taberlet P. Using AFLP to resolve phylogenetic relationships in a morphologically diversified plant species complex when nuclear and chloroplast sequences fail to reveal variability. Mol. Phylogenet. Evol. 2003;27:185-196. DOI:10.1016/s1055-7903(02)00445-1.

8. D’iachenko E.A., Ryzhova N.N., Vishniakova M.A., Kochieva E.Z. Molecular genetic diversity of the pea (Pisum sativum L.) from the Vavilov Research Institute collection detected by AFLP analysis. Genetika = Russ. J. Genet. 2014;50(9):916-924. DOI:10.1134/S102279541409004X.

9. Dyachenko E.A., Kulakova A.V., Shchennikova A.V., Kochieva E.Z. Genome variability of Russian potato cultivars: AFLP-analysis data. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2020; 55(3):499-509. DOI:10.15389/agrobiology.2020.3.499eng.

10. Elameen A., Klemsdal S.S., Dragland S., Fjellheim S., Rognli O.A. Genetic diversity in a germplasm collection of roseroot (Rhodiola rosea) in Norway studied by AFLP. Biochem. Syst. Ecol. 2008;36: 706-715. DOI:10.1016/j.bse.2008.07.009.

11. El-Esawi M.A., Alaraidh I.A., Alsahli A.A., Ali H.M., Alayafi A.A., Witczak J., Ahmad M. Genetic variation and alleviation of salinity stress in barley (Hordeum vulgare L.). Molecules. 2018a;23(10): E2488. DOI:10.3390/molecules23102488.

12. El-Esawi M.A., Al-Ghamdi A.A., Ali H.M., Alayafi A.A., Witczak J., Ahmad M. Analysis of genetic variation and enhancement of salt tolerance in French pea (Pisum sativum L.). Int. J. Mol. Sci. 2018b; 19(8):E2433. DOI:10.3390/ijms19082433.

13. Foolad M.R. Genome mapping and molecular breeding of tomato. Int. J. Plant Genomics. 2007;2007:64358.

14. García-Martínez S., Andreani L., Garcia-Gusano M., Geuna F., Ruiz J.J. Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars. Genome. 2006;49(6): 648-656. DOI:10.1139/g06-016.

15. Hajjar R., Hodgkin T. The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica. 2007; 156(1):1-13. DOI:10.1007/s10681-007-9363-0.

16. Hammer O., Harper D.A.T., Ryan P.D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001;4(1):1-9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.

17. Hassan F.S.C., Solouki M., Fakheri B.A., Nezhad N.M., Masoudi B. Mapping QTLs for physiological and biochemical traits related to grain yield under control and terminal heat stress conditions in bread wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants. 2018;24(6):1231-1243. DOI:10.1007/s12298-018-0590-8.

18. Hubisz M.J., Falush D., Stephens M., Pritchard J.K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 2009;9(5):1322-1332. DOI:10.1111/j.1755-0998.2009.02591.x.

19. Jacobs M.M., van den Berg R.G., Vleeshouwers V.G., Visser M., Mank R., Sengers M., Hoekstra R., Vosman B. AFLP analysis reveals a lack of phylogenetic structure within Solanum section Petota. BMC Evol. Biol. 2008;8:145. DOI:10.1186/1471-2148-8-145.

20. Kardolus J.P., van Eck H.J., van den Berg R.G. The potential of AFLPs in biosystematics: a first application in Solanum taxonomy (Solanaceae). Plant Syst. Evol. 1998;210:87-103. DOI:10.1007/BF00984729.

21. Karp A., Kresovich S., Bhat K.V., Ayad W.G., Hodgkin T. Molecular tools in plant genetic resources conservation. IPGRI Technical Bulletin No. 2. Rome, Italy, 1997.

22. Kim J.H., Joung H., Kim H.Y., Lim Y.P. Estimation of genetic variation and relationship in potato (Solanum tuberosum L.) cultivars using AFLP markers. Am. J. Potato Res. 1998;75(2):107-112. DOI:10.1007/BF02883885.

23. Kochieva E.Z., Ryzhova N.N. Analysis of resistance gene family diversity in pepper (Capsicum annuum). Dokl. Biochem. Biophys. 2009; 425:73-75. DOI:10.1134/s1607672909020045.

24. Krishnamurthy S.L, Prashanth Y., Rao A.M., Reddy K.M., Ramachandra R. Assessment of AFLP marker based genetic diversity in chilli (Capsicum annuum L. & C. baccatum L.). Indian J. Biotechnol. 2015;14:49-54.

25. Labate J.A., Robertson L.D. Evidence of cryptic introgression in tomato (Solanum lycopersicum L.) based on wild tomato species alleles. BMC Plant Biol. 2012;12:133. DOI:10.1186/1471-2229-12-133.

26. Li X., Ding X., Chu B., Zhou Q., Ding G., Gu S. Genetic diversity analysis and conservation of the endangered Chinese endemic herb Dendrobium officinale Kimura et Migo (Orchidaceae) based on AFLP. Genetica. 2008;133:159-166. DOI:10.1007/s10709-007-9196-8.

27. Maligeppagol M., Chandra G.S., Navale P.V., Deepa H., Rajeev P.R., Asokan R., Babu K.P., Bujji Babu C.S., Rao V.K., Krishna Kumar N.K. Anthocyanin enrichment of tomato (Solanum lycopersicum L.) fruit by metabolic engineering. Curr. Sci. 2013;105(1): 72-80. https://www.jstor.org/stable/24092679.

28. Manoko M.L.K., van den Berg R.G., Feron R.M.C., van der Weerden G.M., Mariani C. AFLP markers support separation of Solanum nodiflorum from Solanum americanum sensu stricto (Solanaceae). Plant Syst. Evol. 2007;267(1-4):1-11. DOI:10.1007/s00606-007-0531-4.

29. Mba C., Tohme J. Use of AFLP markers in surveys of plant diversity. Meth. Enzymol. 2005;395:177-201. DOI:10.1016/S0076-6879(05)95012-X.

30. McGregor C.E., van Treuren R., Hoekstra R., van Hintum T.J. Analysis of the wild potato germplasm of the series Acaulia with AFLPs: implications for ex situ conservation. Theor. Appl. Genet. 2002; 104(1):146-156. DOI:10.1007/s001220200018.

31. Miao L., Shou S., Cai J., Jiang F., Zhu Z., Li H. Identification of two AFLP markers linked to bacterial wilt resistance in tomato and conversion to SCAR markers. Mol. Biol. Rep. 2009;36(3):479-486. DOI:10.1007/s11033-007-9204-1.

32. Nakazato T., Franklin R.A., Kirk B.C., Housworth E.A. Population structure, demographic history, and evolutionary patterns of a greenfruited tomato, Solanum peruvianum (Solanaceae), revealed by spatial genetics analyses. Am. J. Bot. 2012;99(7):1207-1216. DOI:10.3732/ajb.1100210.

33. Nakazato T., Housworth E.A. Spatial genetics of wild tomato species reveals roles of the Andean geography on demographic history. Am. J. Bot. 2011;98(1):88-98. DOI:10.3732/ajb.1000272.

34. Nakazato T., Warren D.L., Moyle L.C. Ecological and geographic modes of species divergence in wild tomatoes. Am. J. Bot. 2010;97: 680-693. DOI:10.3732/ajb.0900216.

35. Nurmansyah A.S.S., Migdadi H.M., Khan M.A., Afzal M. AFLPbased analysis of variation and population structure in mutagenesis induced faba bean. Diversity. 2020;12:303. DOI:10.3390/d12080303.

36. Peralta I.E., Spooner D.M., Knapp S. Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Syst. Bot. Monogr. 2008;84:1-186. DOI:10.2307/25027972.

37. Povero G., Gonzali S., Bassolino L., Mazzucato A., Perata P. Transcriptional analysis in high-anthocyanin tomatoes reveals synergistic effect of Aft and atv genes. J. Plant Physiol. 2011;168:270-279. DOI:10.1016/j.jplph.2010.07.022.

38. Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945-959. DOI:10.1093/genetics/155.2.945.

39. Puchooa D. A simple, rapid and efficient method for the extraction of genomic DNA from lychee (Litchi chinensis Sonn.). Afr. J. Biotechnol. 2004;3:253-255. DOI:10.5897/AJB2004.000-2046.

40. Rick C.M. Tomato Lycopersicon escultentum (Solanaceae). In: Simmonds N.W. (Ed.) Evolution of Crop Plants. Longman, London, UK, 1976;268-273.

41. Ronikier M. The use of AFLP markers in conservation genetics – a case study on Pulsatilla vernalis in the Polish lowlands. Cell. Mol. Biol. Lett. 2002;7:677-684.

42. Saliba-Colombani V., Causse M., Gervais L., Philouze J. Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome. Genome. 2000;43(1):29-40.

43. Sánchez-Teyer F., Moreno-Salazar S., Esqueda M., Barraza A., Robert M.L. Genetic variability of wild Agave angustifolia populations based on AFLP: a basic study for conservation. J. Arid. Environ. 2009;73:611-616. DOI:10.1016/j.jaridenv.2009.01.008.

44. Semagn K., Bjørnstad Å., Ndjiondjop M.N. An overview of molecular marker methods for plants. Afr. J. Biotechnol. 2006;5(25):2540-2568. https://www.ajol.info/index.php/ajb/article/view/56080.

45. Shamshin I.N., Maslova M.V., Gryazneva Y.V. Analysis of a genetic collection of tomato cultivars and hybrid forms for resistance to leaf mold using DNA markers. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2019;180(3):63-70. DOI:10.30901/2227-8834-2019-3-63-70. (in Russian)

46. Shcherban A.B. Prospects for marker-associated selection in tomato Solanum lycopersicum L. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(5):534-541. DOI:10.18699/VJ19.522.

47. Sheeja T.E., Kumar I.P.V., Giridhari A., Minoo D., Rajesh M.K., Babu K.N. Amplified fragment length polymorphism: applications and recent developments. Methods Mol. Biol. 2021;2222:187-218. DOI:10.1007/978-1-0716-0997-2_12.

48. Suliman-Pollatschek S., Kashkush K., Shats H., Hillel J., Lavi U. Generation and mapping of AFLP, SSRs and SNPs in Lycopersicon esculentum. Cell. Mol. Biol. Lett. 2002;7(2A):583-597.

49. Swiecicka M., Filipecki M., Lont D., Van Vliet J., Qin L., Goverse A., Bakker J., Helder J. Dynamics in the tomato root transcriptome on infection with the potato cyst nematode Globodera rostochiensis. Mol. Plant Pathol. 2009;10:487-500. DOI:10.1111/j.1364-3703.2009.00550.x.

50. Święcicka M., Skowron W., Cieszyński P., Dąbrowska-Bronk J., Matuszkiewicz M., Filipecki M., Koter M.D. The suppression of tomato defence response genes upon potato cyst nematode infection indicates a key regulatory role of miRNAs. Plant Physiol. Biochem. 2017;113:51-55. DOI:10.1016/j.plaphy.2017.01.026.

51. Tatikonda L., Wani S.P., Kannan S., Beerelli N., Sreedevi T.K., Hoisington D.A., Devi P., Varshney R.K. AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L.: a biofuel plant. Plant Sci. 2009;176:505-513. DOI:10.1016/j.plantsci.2009.01.006.

52. The 100 Tomato Genome Sequencing Consortium, Aflitos S., Schijlen E., de Jong H., de Ridder D., Smit S., Finkers R., Wang J., Zhang G., Li N., Mao L., … Vriezen W., Janssen A., Datema E., Jahrman T., Moquet F., Bonnet J., Peters S. Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by wholegenome sequencing. Plant J. 2014;80(1):136-148. DOI:10.1111/tpj.12616.

53. Thomas C.M., Vos P., Zabeau M., Jones D.A., Norcott K.A., Chadwick B.P., Jones J.D. Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum. Plant J. 1995;8(5): 785-794. DOI:10.1046/j.1365-313x.1995.08050785.x.

54. van Ee B.W., Jelinski N., Berry P.E., Hipp A.L. Phylogeny and biogeography of Croton alabamensis (Euphorbiaceae), a rare shrub from Texas and Alabama, using DNA sequence and AFLP data. Mol. Ecol. 2006;15:2735-2751. DOI:10.1111/j.1365-294X.2006.02970.x.

55. Vetelainen M., Gammelgard E., Valkonen J.P.T. Diversity of Nordic landrace potatoes (Solanum tuberosum L.) revealed by AFLPs and morphological characters. Genet. Resour. Crop Evol. 2005;52:999-1010. DOI:10.1007/s10722-003-6129-y.

56. Vos P., Hogers R., Bleeker M., Reijans M., van der Lee T.A.J., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M., Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995; 23:4407-4414. DOI:10.1093/nar/23.21.4407.

57. Zawko G., Krauss S.L., Dixon K.W., Sivasithamparam K. Conservation genetics of the rare and endangered Leucopogon obtectus (Ericaceae). Mol. Ecol. 2001;10:2389-2396. DOI:10.1046/j.0962-1083.2001.01378.x.


Review

Views: 568


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)