Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Localization of the quantitative trait loci related to lodging resistance in spring bread wheat (Triticum aestivum L.)

https://doi.org/10.18699/VJGB-22-82

Abstract

The yield and grain quality of spring and winter wheat significantly depends on varieties’ resistance to lodging, the genetic basis of this trait being quantitative and controlled by a large number of loci. Therefore, the study of the genetic architecture of the trait becomes necessary for the creation and improvement of modern wheat varieties. Here we present the results of localization of the genomic regions associated with resistance to lodging, plant height, and upper internode diameter in Russian bread wheat varieties. Phenotypic screening of 97 spring varieties and breeding lines was carried out in the field conditions of the West Siberian region during 2017–2019. It was found that 54 % of the varieties could be characterized as medium and highly resistant to lodging. At the same time, it was noted that the trait varied over the years. Twelve varieties showed a low level of resistance in all years of evaluation. Plant height-based grouping of the varieties showed that 19 samples belonged to semi-dwarfs (60–84 cm), and the rest were included in the group of standard-height plants (85–100 cm). Quantitative trait loci (QTL) mapping was performed by means of genome-wide association study (GWAS) using 9285 SNP markers. For lodging resistance, plant height, and upper internode diameter, 26 significant associations (–log p > 3) were found in chromosomes 1B, 2A, 3A, 3D, 4A, 5A, 5B, 5D, 6A, and 7B. The results obtained suggest that the regions of 700–711 and 597–618 Mb in chromosomes 3A and 6A, respectively, may contain clusters of genes that affect lodging resistance and plant height. No chromosome regions colocalized with the QTLs associated with lodging resistance or upper internode diameter were found. The present GWAS results may be important for the development of approaches for creating lodging-resistant varieties through marker-assisted and genomic selection.

About the Authors

I. N. Leonova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



E. V. Ageeva
Siberian Research Institute of Plant Production and Breeding – Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



References

1. Ain Q., Rasheed A., Anwar A., Mahmood T., Imtiaz M., Mahmood T., Xia X., He Z., Quraishi U.M. Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Front. Plant Sci. 2015;6:743. DOI:10.3389/fpls.2015.00743.

2. Akram S., Arif M.A.R., Hameed A.A. GBS-based GWAS analysis of adaptability and yield traits in bread wheat (Triticum aestivum L.) J. Appl. Genet. 2021;62(1):27-41. DOI:10.1007/s13353-020-00593-1.

3. Aoun M., Rouse M.N., Kolmer J.A., Kumar A., Elias E.M. Genomewide association studies reveal all-stage rust resistance loci in elite durum wheat genotypes. Front. Plant Sci. 2021;12:640739. DOI:10.3389/fpls.2021.640739.

4. Atkins I.M. Relation of certain plant characters to strength of straw and lodging in winter wheat. J. Agricult. Res. 1938;56:99-120.

5. Battenfield S.D., Sheridan J.L., Silva L.D.C.E., Miclaus K.J., Dreisigacker S., Wolfinger R.D., Peña R.J., Singh R.P., Jackson E.W., Fritz A.K., Guzmán C., Poland J.A. Breeding-assisted genomics: applying meta-GWAS for milling and baking quality in CIMMYT wheat breeding program. PLoS One. 2018;13(11):e0204757. DOI:10.1371/journal.pone.0204757.

6. Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 1995;57:289-300. DOI:10.1111/j.2517-6161.1995.tb02031.x.

7. Berry P.M., Berry S.T. Understanding the genetic control of lodgingassociated plant characters in winter wheat (Triticum aestivum L.). Euphytica. 2015;205:671-689. DOI:10.1007/s10681-015-1387-2.

8. Berry P., Spink J., Gay A., Craigon J. A comparison of root and stem lodging risks among winter wheat cultivars. J. Agricult. Sci. 2003; 141:191-202. DOI:10.1017/S002185960300354X.

9. Börner A., Schumann E., Fürste A., Cöster H., Leithold B., Röder S., Weber E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 2002;105(6-7):921-936. DOI:10.1007/s00122-002-0994-1.

10. Bradbury P.J., Zhang Z., Kroon D.E., Casstevens T.M., Ramdoss Y., Buckler E.S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633-2635. DOI:10.1093/bioinformatics/btm308.

11. Casebow R., Hadley C., Uppal R., Addisu M., Loddo S., Kowalski A., Griffiths S., Gooding M. Reduced height (Rht) alleles affect wheat grain quality. PLoS One. 2016;11(5):e0156056. DOI:10.1371/journal.pone.0156056.

12. Cericola F., Jahoor A., Orabi J., Andersen J.R., Janss L.L., Jensen J. Optimizing training population size and genotyping strategy for genomic prediction using association study results and pedigree information. A case of study in advanced wheat breeding lines. PLoS One. 2017;12(1):e0169606. DOI:10.1371/journal.pone.0169606.

13. Chernook A.G., Kroupin P.Yu., Bespalova L.A., Panchenko V.V., Kovtunenko V.Ya., Bazhenov M.S., Nazarova L.A., Karlov G.I., Kroupina A.Yu., Divashuk M.G. Phenotypic effects of the dwarfing gene Rht-17 in spring durum wheat under two climatic conditions. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(7):916-925. DOI:10.18699/VJ19.567. (in Russian)

14. Demina I.F. Breeding value of varieties of soft spring wheat of different ecological and geographical groups in terms of resistance to lodging. Surskiy Vestnik = Sura Herald. 2019;2(6):27-30. (in Russian)

15. Dreccer M.F., Macdonald B., Farnsworth C.A., Paccapelo M.V., Awasi M.A., Condon A.G., Forrest K., Long I.L., McIntyre C.L. Multidonor × elite-based populations reveal QTL for low-lodging wheat. Theor. Appl. Genet. 2022;135:1685-1703. DOI:10.1007/s00122-022-04063-6.

16. Earl D.A., vonHoldt B.M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012;4:359-361. DOI:10.1007/s12686-011-9548-7.

17. Ellis M., Rebetzke G., Chandler P., Bonnett D., Spielmeyer W., Richards R. The effect of different height reducing genes on the early growth of wheat. Funct. Plant Biol. 2004;31:583-589. DOI:10.1071/FP03207.

18. Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 2005;14:2611-2620. DOI:10.111/j.1365-294X.2005.02553.x.

19. Flintham J.E., Börner A., Worland A.J., Gale M.D. Optimizing wheat grain yield effects of Rht (gibberellin-insensitive) dwarfing genes. J.Agricult. Sci. 1997;128:11-25. DOI:10.1017/S0021859696003942.

20. Ford B.A., Foo E., Sharwood R., Karafiatova M., Vrána J., MacMillan C., Nichols D.S., Steuernagel B., Uauy C., Dolezel J., Chandler P.M., Spielmeyer W. Rht18 semidwarfism in wheat is due to increased GA 2-oxidase A9 expression and reduced GA content. Plant Physiol. 2018;177:168-180. DOI:10.1104/pp.18.00023.

21. Gahlaut V., Jaiswal V., Balyan H.S., Joshi A.K., Gupta P.K. Multi-locus GWAS for grain weight-related traits under rain-fed conditions in common wheat (Triticum aestivum L.). Front. Plant Sci. 2021;12: 758631. DOI:10.3389/fpls.2021.758631.

22. Gale M.D., Law C.N., Worland A.J. The chromosomal location of a major dwarfing gene from Norin 10 in new British semi-dwarf wheats. Heredity. 1975;35:417-421.

23. Gao F., Wen W., Liu J., Rasheed A., Yin G., Xia X., Wu X., He Z. Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Front. Plant Sci. 2015;6:1099. DOI:10.3389/fpls.2015.01099.

24. Guidelines for Studying the World Wheat Collection. Leningrad: VIR Publ., 1987. (in Russian)

25. Hai L., Guo H., Xiao S., Jiang G., Zhang X., Yan C., Xin Z., Jia J. Quantitative trait loci (QTL) of stem strength and related traits in a doubled-haploid population of wheat (Triticum aestivum L.). Euphytica. 2005;141:1-9. DOI:10.1007/s10681-005-4713-2.

26. Keller M., Karutz Ch., Schmid J.E., Stamp P., Winzeler M., Keller B., Messmer M.M. Quantitative trait loci for lodging resistance in a segregating wheat × spelt population. Theor. Appl. Genet. 1999;98: 1171-1182. DOI:10.1007/s001220051182.

27. Kharyutkina E.V., Loginov S.V., Usova E.I., Martynova Yu.V., Pustovalov K.N. Tendencies in changes of climate extremality in Western Siberia at the end of the XX century and the beginning of the XXI century. Fundamentalnaya i Prikladnaya Klimatologiya = Basic and Applied Climatology. 2019;2:45-65. DOI:10.21513/2410-8758-2019-2-45-65. (in Russian)

28. Khobra R., Sareen S., Meena B.K., Kumar A., Tiwari V., Singh G.P. Exploring the traits for lodging tolerance in wheat genotypes: a review. Physiol. Mol. Biol. Plants. 2019;25(3):589-600. DOI:10.1007/s12298-018-0629-x.

29. Kiseleva A.A., Shcherban A.B., Leonova I.N., Frenkel Z., Salina E.A. Identification of new heading date determinants in wheat 5B chromosome. BMC Plant Biol. 2016;16:8. DOI:10.1186/s12870-015-0688-x.

30. Kokhmetova A., Sehgal D., Ali S., Atishova M., Kumarbayeva M., Leonova I., Dreisigacker S. Genome-wide association study of tan spot resistance in a hexaploid wheat collection from Kazakhstan. Front. Genet. 2021;11:581214. DOI:10.3389/fgene.2020.581214.

31. Korzun V., Roder M.S., Ganal M.W., Worland A.J., Law C.N. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum). Theor. Appl. Genet. 1998;96:1104-1109. DOI:10.1007/s001220050845.

32. Leonova I.N., Kiseleva A.A., Berezhnaya A.A., Stasyuk A.I., Likhenko I.E., Salina E.A. Identification of QTLs for grain protein content in Russian spring wheat varieties. Plants. 2022;11:437. DOI:10.3390/plants11030437.

33. Li X.-P., Lan S.-Q., Liu Y.-P., Gale M.D., Worland T.J. Effects of different Rht-B1b, Rht-D1b and Rht-B1c dwarfing genes on agronomic characteristics in wheat. Cereal Res. Commun. 2006;34(2/3):919-924. DOI:10.1556/CRC.34.2006.2-3.220.

34. Liu J., Yao Y., Xin M., Peng H., Ni Z., Sun Q. Shaping polyploid wheat for success: origins, domestication, and the genetic improvement of agronomic traits J. Integr. Plant Biol. 2022;64:536-563. DOI:10.1111/jipb.13210.

35. Luján Basile S.M., Ramírez I.A., Crescente J.M., Conde M.B., Demichelis M., Abbate P., Rogers W.J., Pontaroli A.K., Helguera M., Vanzetti L.S. Haplotype block analysis of an Argentinean hexaploid wheat collection and GWAS for yield components and adaptation. BMC Plant Biol. 2019;19:553. DOI:10.1186/s12870-019-2015-4.

36. Malik P.L., Janss L., Nielsen L.K., Borum F., Jørgensen H., Eriksen B., Schjoerring J.K., Rasmussen S.K. Breeding for dual-purpose wheat varieties using marker–trait associations for biomass yield and quality traits. Theor. Appl. Genet. 2019;132:3375-3398. DOI:10.1007/s00122-019-03431-z.

37. Miralles D.J., Slafer G.A. Yield, biomass and yield components in dwarf, semi-dwarf and tall isogenic lines of spring wheat under recommended and late sowing dates. Plant Breed. 1995;114(5):392-396. DOI:10.1111/j.1439-0523.1995.tb00818.x.

38. Mo Y., Vanzetti L.S., Hale I., Spagnolo I.J., Guidobaldi F., Al-OboudiJ., Odle N., Pearce S., Helguera M., Dubcovsky J. Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development Theor. Appl. Genet. 2018;131:2021-2035. DOI:10.1007/s00122-018-3130-6.

39. Muhammad A., Li J., Hu W., Yu J., Khan S.U., Khan M.H.U., Xie G., Wang J., Wang L. Uncovering genomic regions controlling plant architectural traits in hexaploid wheat using different GWAS models. Sci. Rep. 2021;11(1):6767. DOI:10.1038/s41598-021-86127-z.

40. Packa D., Wiwart M., Suchowilska E., Bieńkowska T. Morpho-anatomical traits of two lowest internodes related to lodging resistance in selected genotypes of Triticum. Int. Agrophys. 2015;29(4):475-483. DOI:10.1515/intag-2015-0053.

41. Peng J.R., Richards D.E., Hartley N.M., Murphy G.P., Devos K.M., Flintham J.E., Beales J., Fish L.J., Worland A.J., Pelica F., Sudhakar D., Christou P., Snape J.W., Gale M.J., Harberd N.P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature. 1999;400(6741):256-261. DOI:10.1038/22307.

42. Pritchard J., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945-959. DOI:10.1534/genetics.116.195164.

43. Pshenichnikova T.A., Osipova S.V., Smirnova O.G., Leonova I.N., Permyakova M.D., Permyakov A.V., Rudikovskaya E.G., Konstantinov D.K., Verkhoturov V.V., Lohwasser U., Börner А. Regions of chromosome 2A of bread wheat (Triticum aestivum L.) associated with variation in physiological and agronomical traits under contrasting water regimes. Plants. 2021;10:1023. DOI:10.3390/plants10051023.

44. Rebetzke G., Richards R., Fischer V.M., Mickelson B.J. Breeding long coleoptile, reduced height wheats. Euphytica. 1999;106:159-168. DOI:10.1023/A:1003518920119.

45. Shamanin V.P., Truschenko А.Yu. General Breeding and Variety Science of Field Crops. Omsk: OmGAU Publ., 2006;39-41. (in Russian)

46. Singh D., Wang X., Kumar U., Gao L., Noor M., Imtiaz M., Singh R.P., Poland J. High-throughput phenotyping enabled genetic dissection of crop lodging in wheat. Front. Plant Sci. 2019;10:394. DOI:10.3389/fpls.2019.00394.

47. Stapper M., Fischer R.A. Genotype, sowing date and plant spacing influence on high-yielding irrigated wheat in Southern New South Wales. I. Potential yields and optimum flowering dates. Aust. J. Agric. Res. 1990;41:1043-1056.

48. Sukhikh I.S., Vavilova V.J., Blinov A.G., Goncharov N.P. Divesity and phenotypical effect of allelic variants of Rht dwarfing genes in wheat. Russ. J. Genet. 2021;57(2):127-138. DOI:10.31857/S0016675821020107.

49. Verma V., WorlandA.J., Savers E.J., Fish L., Caligari P.D.S., Snape J.W. Identification and characterization of quantitative trait loci related to lodging resistance and associated traits in bread wheat. Plant Breed. 2005;124(3):234-241. DOI:10.1111/j.1439-0523.2005.01070.x.

50. Vikhe P., Patil R., Chavan A., Oak M., Tamhankar S. Mapping gibberellin-sensitive dwarfing locus Rht18 in durum wheat and development of SSR and SNP markers for selection in breeding. Mol. Breed. 2017;37:28. DOI:10.1007/s11032-017-0641-9.

51. Wang N., Liu B., Liang X., Zhou Y., Song J., Yang J., Yong H., Weng J., Zhang D., Li M., Nair S., Vicente F.S., Hao Z., Zhang X., Li X. Genome-wide association study and genomic prediction analyses of drought stress tolerance in China in a collection of off-PVP maize inbred lines. Mol. Breed. 2019;39:113. DOI:10.1007/s11032-019-1013-4.

52. Wang S., Wong D., Forrest K., Allen A., Chao S., Huang B.E., Maccaferri M., Salvi S., Milner S.G., Cattivelli L., Mastrangelo A.M., WhanA., Stephen S., Barker G., Wieseke R., Plieske J., International Wheat Genome Sequencing Consortium, Lillemo M., Mather D., Appels R., Dolferus R., Brown-Guedira G., Korol A., Akhunova A.R., Feuillet C., Salse J., Morgante M., Pozniak C., Luo M.-C., Dvorak J., Morell M., Dubcovsky J., Ganal M., Tuberosa R., Lawley C., Mikoulitch I., Cavanagh C., Edwards K.J., Hayden M., Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol. J. 2014;12:787-796. DOI:10.1111/pbi.12183.

53. Würschum T., Langer S.M., Longin C.F.H., Tucker M.R., Leiser W.L. A modern Green Revolution gene for reduced height in wheat. Plant J. 2017;92:892-903. DOI:10.1111/tpj.13726.

54. Yan J., Zhang S. Effects of dwarfing genes on water use efficiency of bread wheat. Front. Agr. Sci. Eng. 2017;4:126-134. DOI:10.15302/J-FASE-2017134.

55. Zakharov V.G., Syukov V.V., Yakovleva O.D. Correlation of morphoanatomical traits with lodging resistance in spring wheat in the Middle Volga region. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2014;18(3):506-510. (in Russian)

56. Zaytseva I.Yu., Shchennikova I.N. Association of morphological traits with lodging resistance in spring barley under the conditions of the Volga-Vyatka region. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2020;181(3):32-40. DOI:10.30901/2227-8834-2020-3-32-40. (in Russian)

57. Zhuchenko A.A. Resource Potential of Grain Production in Russia. Moscow, 2004. (in Russian)


Review

Views: 559


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)