Preview

Vavilov Journal of Genetics and Breeding

Advanced search

The use of maize haploidy inducers as a tool in agricultural plant biotechnology

https://doi.org/10.18699/VJGB-22-85

Abstract

The discovery of the ability of some mutations to stimulate haploidy during hybridization made it possible to create one of the most promising and sought-after trends in the field of reproductive biology. Haploid inducers created on their basis are capable of increasing the frequency of haploidy up to 15 %. The improvement of the existing haploid inducer lines and the search for new genes that contribute to a high frequency of haploidy are underway. Along with these studies, the field of application of haploid inducers in genetics and plant breeding is expanding. Haploid inducers carrying R1-nj genes for anthocyanin pigmentation of the seed and embryo are able not only to mark the hybrid embryo and identify haploid genotypes, but also to detect genes that suppress the anthocyanin color of the grain, like C1-I, C2-Idf, and In1-D. Depending on their quantity, the phenotypic manifestation of the gene in the seed varies. Haploidy is widely used for accelerating hybrid breeding and obtaining both new maize lines with improved traits and their sterile counterparts. By introducing certain genes into the genome of the improved line, breeders can use the doubled haploid (DH) breeding technology to accelerate the creation of pure lines carrying the desired gene. Haploid inducer maize lines and their tetraploid analogs are used in the selection of rediploid maize lines by their resynthesis from tetraploid genotypes. In 2019, Syngenta Company synthesized a haploid inducer maize line carrying a CRISPR/cas construct capable of simultaneously stimulating haploidy and editing the genome at a specified DNA site. Thanks to this technology, it became possible to improve haploid inducers by introducing various CRISPR/cas constructs into the haploid inducer genome for editing any DNA site. Maize haploid inducers are widely used in doubled haploid wheat breeding. The first experiments showed that the most effective haploid inducer for stimulating haploidy in wheat is maize pollen. Researchers are intensively searching for other ways of using maize haploid inducers in plant breeding.

About the Authors

A. V. Ulyanov
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



A. V. Karlov
Saratov State University
Russian Federation

Saratov



E. B. Khatefov
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



References

1. Asadova G.M., Ul’yanov A.V., Karlov M.V., Hatefov E.B. The prospects for using haploinducers in maize breeding. Biotekhnologiya i Selektsiya Rasteniy = Plant Biotechnology and Breeding. 2020;3(2): 16-29. DOI:10.30901/2658-6266-2020-2-o3. (in Russian)

2. Astaurov B.L. Genetics of Sex. Moscow: Moscow University Press, 1966. (in Russian)

3. Astaurov B.L. Parthenogenesis, Androgenesis, Polyploidy. Moscow: Nauka Publ., 1977. (in Russian)

4. Batygina T.B. Apomixis. Embryology of Flowering Plants. Terminology and concepts. Vol. 3. Reproduction systems. St. Petersburg: Mir i Sem’ya Publ., 2000. (in Russian)

5. Bhojwani S.S., Razdan M.K. Plant Tissue Culture: Theory and Practice. Elsevier, 1996.

6. Blakeslee A.F., Belling J., Farnham M.E., Bergner A.D. A haploid mutant in the Jimson weed, “Datura stramonium”. Science. 1922; 55(1433):646-647. DOI:10.1126/science.55.1433.646.

7. Borodina N.A. Polyploidy in the Introduction of Woody Plants. Moscow: Nauka Publ., 1982. (in Russian)

8. Bylich V., Chalyk S. Existence of pollen grains with a pair of morphologically divergent sperm nuclei as a possible cause of the haploid-inducing capacity in ZMS line. Maize Genet. Coop. News Lett. 1996;70:33.

9. Campion B., Azzimonti M., Vicini E., Schiavi M., Falavigna A. Advances in haploid plant induction in onion (Allium cepa L.) through in vitro gynogenesis. Plant Sci. 1992;86(1):97-104. DOI:10.1016/0168-9452(92)90183-M.

10. Chaikam V., Molenaar W., Melchinger A.E., Boddupalli P.M. Doubled haploid technology for line development in maize: technical advances and prospects. Theor. Appl. Genet. 2019;132(12):3227-3243. DOI:10.1007/s00122-019-03433-x.

11. Chang M.T., Coe E.H. Doubled haploids. In: Kriz A.L., Larkins B.A. (Eds.) Molecular Genetic Approaches to Maize Improvement. Berlin: Springer, 2009;63:127-142. DOI:10.1007/978-3-540-68922-5_10.

12. Chase S.S. Techniques for isolating haploid plants. Am. J. Bot. 1947; 34:579-609.

13. Chase S.S. Monoploid frequencies in a commercial double cross hybrid maize and in its component single cross hybrids and inbred lines. Genetics. 1949;34(3):328-332. DOI:10.1093/genetics/34.3.328.

14. Chase S.S. Monoploids in maize. In: Gowen J.W. (Ed.) Heterosis. Ames (USA): Iowa State College Press, 1952;389-399.

15. Chase S.S. Monoploids and monopoid derivatives of maize (Zea mays L.). Bot. Rew. 1969;35(2):117-168. DOI:10.1007/BF02858912.

16. Chase S.S., Nanda D.K. Screening for monoploids of maize by use of a purple embryo marker. Maize Genet. Coop. News Lett. 1965;39: 59-60.

17. Chen B., Liu L., Xu L., Meng Y., Gui G., Xu X., Jin W., Chen S. Observation on doubling effects of immature haploid embryo in maize. J. China. 2016;21(005):10-16.

18. Chen S., Song T. Identification haploid with high oil xenia effect in maize. Acta Agron. Sinica. 2003;4:587-590.

19. Chumak M.V. Evaluation of known and creation of new markers for the isolation of maize haploids. In: Issues of the Breeding of Grains, Grain Leguminous Crops, and Herbs. Collection of scientific works. Iss. 14. Krasnodar, 1977;110-124. (in Russian)

20. Clausen R.E., Mann M.K. Inheritance in Nicotiana tabacum: V. Occurrence of haploid plants in interspecific descendants. Proc. Natl. Acad. Sci. USA. 1924;10(4):121-124. DOI:10.1073/pnas.10.4.121.

21. Coe E.H. Anthocyanin genetics. In: Freeling M., Walbot V. (Eds.) The Maize Handbook. New York: Springer-Verlag, 1994;279-281. DOI:10.1007/978-1-4612-2694-9_34.

22. Coe E.H., Jr. A line of maize with high haploid frequency. Am. Nat. 1959;93(873):381-382. DOI:10.1086/282098.

23. Darevsky I.S., Kupriyanova L.A., Uzzell T. Parthenogenesis in reptiles. In: Gans C., Billet F. (Eds.) Biology of Reptiles. Vol. 15. New York: J. Wiley and Sons, 1985;411-526.

24. Doctrinal M., Sangwan R.S., Sangwan-Norreel B.S. In vitro gynogenesis in Beta vulgaris L.: effects of plant growth regulators, temperature, genotypes and season. Plant Cell Tissue Organ Cult. 1989;17: 1-12. DOI:10.1007/BF00042276.

25. Dziurka K., Dziurka M., Muszyńska E., Czyczyło-Mysza I., Warchoł M., Juzoń K., Laskoś K., Skrzypek E. Anatomical and hormonal factors determining the development of haploid and zygotic embryos of oat (Avena sativa L.). Sci. Rep. 2022;12(1):548. DOI:10.1038/s41598-021-04522-y.

26. Eder J., Chalyk S. In vivo haploid induction in maize. Theor. Appl. Genet. 2002;104(4):703-708. DOI:10.1007/s00122-001-0773-4.

27. Ermishin A.P., Voronkova E.V. Plant Biotechnology and Biosafety: a guide. Minsk: BGU Publ., 2015. (in Russian)

28. Evans M.M.S. The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development. Plant Cell. 2007;19(1):46-62. DOI:10.1105/tpc.106.047506.

29. Fischer E. Molekulargenetische Untersuchungen zum Vorkommen paternaler DNA-Übertragung bei der in-vivo-Haploideninduktion bei Mais (Zea mays L.). Dissertation. Stuttgart: Univ. of Hohenheim, 2004.

30. Ford R.H. Inheritance of kernel color in corn: explanations & investigations. Am. Biol. Teach. 2000;62(3):181-188. DOI:10.2307/4450870.

31. Gains E.F., Aase H.C. A haploid wheat plant. Am. J. Bot. 1926;13(6): 373-385. DOI:10.2307/2435439.

32. Geiger H.H., Gordillo G.A. Doubled haploids in hybrid maize breeding. Maydica. 2009;54(4):485-489.

33. Gernand D., Rutten T., Pickering R., Houben A. Elimination of chromosomes in Hordeum vulgare × Hordeum bulbosum crosses at mitosis and inrephase involves micronucleus formation and progressive heterochromatinization. Cytogenet. Genome Res. 2006;114(2):169-174. DOI:10.1159/000093334.

34. Gilles L.M., Khaled A., Laffaire J.-B., Chaignon S., Chislaine G., Laplaige J., Berges H., Beydon G., Bayle V., Barret P., Comadran J., Martinant J.-P., Rogowsky P.M., Widiez T. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J. 2017;36:707-717. DOI:10.15252/embj.201796603.

35. Golubovsky M.D. The Centenary of Genetics: Evolution of ideas and concepts. St. Petersburg: BoreyArt Publ., 2000. (in Russian)

36. Greenblatt I.M., Bock M. A commercially desirable procedure for detection of monoploids in maize. J. Hered. 1967;58:9-13.

37. Guha S., Maheshwari S.C. In vitro production of embryos from anthers of Datura. Nature. 1964;204:497.

38. Gutorova O.V., Apanasova N.V., Yudakova O.I. Creation of genetically marked maize lines with inherited and induced types of parthenogenesis. Izvestiya Samarskogo Nauchnogo Tsentra RAN = Proceedings of the Samara Scientific Center of the Russian Academy of Sciences. 2016;18(2-2):341-344. (in Russian)

39. Han F.P., Gao Z., Birchler J.A. Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize. Plant Cell. 2009;21:1929-1939.

40. Hu H., Schrag T.A., Peis R., Unterseer S., Schipprack W., Chen Sh., Lai J., Yan J., Prasanna B.M., Nair S.K., Chaikam V., Rotarenco V., Shatskaya O.A., Zavalishina A., Scholten S., Schön Ch.-C., Melchinger A.E. The genetic basis of haploid induction in maize identified with a novel genome-wide association method. Genetics. 2016; 202(4):1267-1276. DOI:10.1534/genetics.115.184234.

41. Kalinowska K., Chamas S., Unkel K., Demidov D., Lermontova I., Dresselhaus T., Kumlehn J., Dunemann F., Houben A. State-of-theart and novel developments of in vivo haploid technologies. Theor. Appl. Genet. 2019;132(3):593-605. DOI:10.1007/s00122-018-3261-9

42. Kasha K.J., Kao K.N. High frequency haploid production in barley (Hordeum vulgare L.). Nature. 1970;225:874-876.

43. Kebede A.Z., Dhillon B.S., Schipprack W., Araus J.L., Banziger M., Semagan K., Alvarado G., Melchinger A.E. Effect of source germplasm and season on the in vivo haploid induction rate in tropical maize. Euphytica. 2011;180:219-226.

44. Keller J.L. Culture of unpollinated ovules, ovaries, and flower buds in somespecies of the genus Allium and haploid induction via gynogenesis in onion (Allium cepa L.). Euphytica. 1990;47:241-247.

45. Kelliher T., Starr D., Richbourg L., Chintamanani S., Delzer B., Nuccio M.L., Green J., Chen Z., McCuiston J., Wang W., Liebler T., Bullock P., Martyin B. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature. 2017;542:105-109.

46. Kelliher T., Starr D., Su X., Tang G., Chen Z., Carter J., Wittich P.E., Dong S., Green J., Burch E., McCuiston J., Gu W., Sun Y., Strebe T., Roberts J., Bate N.J., Que Q. One-step genome editing of elite crop germplasm during haploid induction. Nat. Biotech. 2019;37:287-292.

47. Kermicle J.L. Androgenesis conditioned by a mutation in maize. Science. 1969;166:1422-1424.

48. Kermicle J.L. Pleiotropic effects on seed development of the indeterminate gametophyte gene in maize. Am. J. Bot. 1971;58:1-7.

49. Kermicle J.L. Indeterminate Gametophyte (ig): Biology and Use. New York: Springer-Verlag, 1994.

50. Khatefov E.B., Khoreva V.I., Shomakhov B.R., Kushkhova R.S., Khashirova Z.T., Kudaev R.A., Gyaurgiev A.Kh. Rediploid Maize Lines (diploid lines resynthesized from a tetraploid population for hybrid maize breeding). St. Petersburg: VIR Publ., 2021. (in Russian)

51. Khatefov E.B., Matveeva G.V. Raise of Rediploid Maize Lines. St. Petersburg: VIR Publ., 2018. (in Russian)

52. Khatefov E.B., Shatskaya O.A. The use of haploinducers in heteroploid crosses to expand the diversity of the genetic basis of maize. In: Genetic Resources of Cultivated Plants in the 21st Century: State, problems, prospects. Abstracts from the 2nd Vavilov Int. Conf., St. Petersburg, November 26–30, 2007. St. Petersburg: VIR Publ., 2007;367-369. (in Russian)

53. Khatefov E.B., Shomakhov B.R., Kushkhova R.S., Kudaev R.A., Khashirova Z.T., Gyaurgiev A.Kh. Combining ability and response to CMS in reverse diploid maize lines developed at VIR. Biotekhnologiya i Selektsiya Rasteniy = Plant Biotechnology and Breeding. 2019;2(4):15-23. DOI:10.30901/2658-6266-2019-4-o. (in Russian)

54. Khokhlov S.S., Tyrnov V.S., Grishina E.V., Davoyan N.I. Haploidy and Breeding. Moscow: Nauka Publ., 1976. (in Russian)

55. Kim H.J., Ok S.H., Bahn S.C., Jang J., Oh S.A., Park S.K., Twell D., Ryu S.B., Shin J.S., Notes A. Endoplasmic reticulum- and Golgilocalized phospholipase A2 plays critical roles in Arabidopsis pollen development and germination. Plant Cell. 2011;23(1):94-110. DOI:10.1105/tpc.110.074799.

56. Kirillova G.A. The phenomenon of haploidy in angiosperms. Genetika = Genetics (Moscow). 1966;2(2):137-147. (in Russian)

57. Laurie D.A. Factors affecting fertilization frequency in crosses of Triticum aestivum cv. ‘Highbury’×Zea mays cv. ‘Seneca 60’. Plant Breed. 1989;103:133-140.

58. Laurie D.A., Bennett M.D. The production of haploid wheat plants from wheat×maize crosses. Theor. Appl. Genet. 1988;76:393-397.

59. Li L., Xu X., Jin W., Chen S. Morphological and molecular evidences for DNA introgression in haploid induction via a high oil inducer CAUHOI in maize. Planta. 2009;230(2):367-376.

60. Li X., Meng D., Chen S., Luo H., Zhang Q., Jin W., Yan J. Single nucleus sequencing reveals spermatid chromosome fragmentation as a possible cause of maize haploid induction. Nat. Commun. 2017; 8(1):991.

61. Liu C., Li X., Meng D., Zhong Y., Chen C., Dong X., Xu X., Chen B., Li W., Li L., Tian X., Zhao H., Song W., Lio H., Zhanh Q., Lai J., Jin W., Yan J., Chen S. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. Mol. Plant. 2017;10:520-522. DOI:10.1016/j.molp.2017.01.011.

62. Liu Z., Wang Y., Ren J., Mei M., Frei U.K., Trampe B., Lübberstedt T. Maize doubled haploids. Plant Breed. Rev. 2016;40;123-160.

63. Michalik B., Adamus A., Nowak E. Gynogenesis in Polish onion cultivars. J. Plant Physiol. 2000;156:211-216.

64. Nair S.K., Molenaar W., Melchinger A.E., Boddupalli P.M., Martinez L., Lopez L.A., Chaikam V. Dissection of a major QTL qhir1 conferring maternal haploid induction ability in maize. Theor. Appl. Genet. 2017;130:1113-1122.

65. Nanda D.K., Chase S.S. An embryo marker for detecting monoploids of maize (Zea mays L.). Crop Sci. 1966;6:213-215.

66. Prasanna B.M., Chaikam V., Mahuku G. Doubled Haploid Technology in Maize Breeding: Theory and Practice. Mexico: CIMMYT, 2012.

67. Prigge V., Melchinger A.E. Production of haploids and doubled haploids in maize. Methods Mol. Biol. 2012;877:161-172.

68. Prigge V., Sánchez C., Dhillon B.S., Schipprack W., Araus J.L., Banziger M., Melchinger A.E. Doubled haploids in tropical maize: I. Effects of inducers and source germplasm on in vivo haploid induction rates. Crop Sci. 2011;51:1498-1506.

69. Qiu F., Liang Y., Li Y., Liu Y., Wang L., Zheng Y. Morphological, cellular and molecular evidences of chromosome random elimination in vivo upon haploid induction in maize. Curr. Plant Biol. 2014;1: 83-90.

70. Ravi M., Chan S.W.L. Haploid plants produced by centromere-mediated genome elimination. Nature. 2010;464:615-618.

71. Ravi M., Shibata F., Ramahi J.S., Nagaki K., Chen C., Murata M. Meiosis-specific loading of the centromere-specific histone CENH3 in Arabidopsis thaliana. PLoS Genet. 2011;7:e1002121. DOI:10.1371/journal.pgen.1002121.

72. Rimberia F.K., Adaniya S., Etoh T., Ishimine Y. Sex and ploidy of anther culture derived papaya (Carica papaya L.) plants. Euphytica. 2006;149:53-59. DOI:10.1007/s10681-005-9051-x.

73. Röber F.K., Gordillo G.A., Geiger H.H. In vivo haploid induction in maize – performance of new inducers and significance of doubled haploid lines in hybrid breeding. Maydica. 2005;50:275-283.

74. Rotarenco V.A., Kirtoca I.H., Jacota A.G. Possibility to identify kernels with haploid embryo by oil content. Maize Genet. Coop. 2007; 81:11.

75. Rotarenco V., State D., Fuia S. New inducers of maternal haploids in maize. Maize Genet. Coop. 2010;84:1-7.

76. Sanei M., Pickering R., Kumke K., Nasuda S., Houben A. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc. Natl. Acad. Sci. USA. 2011;108:E498-E505.

77. Sarkar K.R., Coe E.H. A genetic analysis of the origin of maternal haploids in maize. Genetics. 1966;54(2):453-64.

78. Seitz G. The use of doubled haploids in corn breeding. In: Proc. 41st Annual Illinois Corn Breeders. Illinois, 2005;1-7.

79. Shatskaya O.A., Shcherbak V.S. Using a modified ig system to create new forms of maize with increased androgenesis. In: Genetics, Breeding, and Technology of Maize Cultivation: Special issue dedicated to the 100th anniversary of Academician M.I. Khadzhinov. Krasnodar, 1999;211-218. (in Russian)

80. Shishkinskaya N.A., Yudakova O.I. Apomixis and plant evolution. Izvestiya Saratovskogo Universiteta. Seriya Khimiya, Biologiya, Ekologiya = Izvestiya of Saratov University. Ser.: Chemistry. Biology. Ecology. 2009;9(1):55-60. (in Russian)

81. Sprague G. Hetero-fertilization in maize. Science. 1929;69(1794): 526-527.

82. Sprague G. The nature and extent of hetero-fertilization in maize. Genetics. 1932:17(3):358-368.

83. Strunnikov V.A. Animal cloning: theory and practice. Priroda = Nature. 1998;7:3-9. (in Russian)

84. Takhtadzhyan A.L. Plant Life. Moscow: Prosveshcheniye Publ., 1980. (in Russian)

85. Tek A.L., Stupar R.M., Nagaki K. Modification of centromere structure: a promising approach for haploid line production in plant breeding. Turk. J. Agric. For. 2015;39(4):557-562. DOI:10.3906/tar-1405-137.

86. Tian X., Qin Y., Chen B., Liu C., Wang L., Li X., Dong X., Liu L., Chen S. Hetero-fertilization together with failed egg–sperm cell fusion supports single fertilization involved in in vivo haploid induction in maize. J. Exp. Bot. 2018;69(20):4689-4701. Tyrnov V.S., Khokhlov S.S. Androgenesis in angiosperms. Genetika = Genetics (Moscow). 1974;10(9):154-167. (in Russian)

87. Tyrnov V.S., Khokhlov S.S. Androgenesis. In: Haploidy and Breeding. Moscow: Nauka Publ., 1976;87-99 (in Russian)

88. Tyrnov V.S., Zavalishina A.N. Induction of high frequency of occurrence of matroclinic haploids in maize. Doklady Akademii Nauk SSSR = Doklady Academy of Sciences of the USSR. 1984;276(3): 735-738. (in Russian)

89. Wang B., Zhu L., Zhao B., Zhao Y., Xie Y., Zheng Z., Li Y., Sun J., Wang H. Development of a Haploid-Inducer Mediated Genome Editing system for accelerating maize breeding. Mol. Plant. 2019; 12:597-602.

90. Wedzony M., Röber F., Geiger H. Chromosome elimination observed in selfed progenies of maize inducer line RWS. In: XVIIth Int. Congress on Sex Plant Reproduction. Maria Curie-Sklodowska Univ. Press, 2002;173.

91. Xu X., Li L., Dong X., Jin W., Melchinger A.E., Chen S. Gametophytic and zygotic selection leads to segregation distortion through in vivo induction of a maternal haploid in maize. J. Exp. Bot. 2013;64(4): 1083-1096.

92. Yan G., Liu H., Wang H. Accelerated generation of selfed pure line plants for gene identification and crop breeding. Front. Plant Sci. 2017;8:1786. DOI:10.3389/fpls.2017.01786.

93. Yudakova O.I. Plant Reproduction Systems. Apomixis. Saratov, 2017. (in Russian)

94. Zhao X., Xu X., Xie H., Chen S., Jin W. Fertilization and uniparental chromosome elimination during crosses with maize haploid inducers. Plant Physiol. 2013;163(2):721-731. DOI:10.1104/pp.113.223982.

95. Zhong Y., Liu C., Qi X., Jiao Y., Wang D., Wang Y., Liu Z., Chen C., Chen B., Tian X., Li J., Chen M., Dong X., Xu X., Li L., Li W., Liu W., Jiu W., Lai J., Chen S. Mutation of ZmDMP enhances haploid induction in maize. Nat. Plants. 2019;5:575-580.


Review

Views: 1052


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)