Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Рациональная метаболическая инженерия Corynebacterium glutamicum для продукции L-валина

https://doi.org/10.18699/VJGB-22-90

Аннотация

L-Валин – одна из девяти аминокислот, которые не могут быть синтезированы de novo высшими организмами и должны поступать с пищей. Эта аминокислота не только служит строительным материалом для белков, но также регулирует белковый и энергетический обмен и участвует в нейротрансмиссии. L-Валин используется в пищевой и фармацевтической промышленности, медицине и косметике, но в первую очередь в качестве кормовой добавки для животных. Добавление L-валина в корм отдельно или в смеси с другими незаменимыми аминокислотами позволяет использовать корма с меньшим содержанием сырого белка, повышает качество и количество мяса свиней и цыплят-бройлеров, а также улучшает репродуктивные функции сельскохозяйственных животных. Несмотря на то что рынок L-валина постоянно растет, в нашей стране эта аминокислота пока не производится. В современных условиях создание штаммов-продуцентов и организация производства L-валина для России особенно актуальны. Один из наиболее часто используемых базовых микроорганизмов для создания продуцентов аминокислот наряду с Escherichia coli – почвенная бактерия Corynebacterium glutamicum. Обзор посвящен анализу основных стратегий разработки продуцентов L-валина на базе C. glutamicum. Рассмотрены различные аспекты биосинтеза L-валина у коринебактерий: биохимия, стехиометрия и регуляция процесса, ферменты и соответствующие им гены, системы экспорта и импорта, связь биосинтеза L-валина с центральным метаболизмом клетки. Выявлены ключевые генетические элементы для создания штаммов-продуцентов на основе C. glutamicum. Описано использование метаболической инженерии для усиления реакций биосинтеза L-валина и уменьшения образования побочных продуктов. Показаны перспективы усовершенствования штаммов с точки зрения повышения их продуктивности и улучшения технологических характеристик. Информация, представленная в обзоре, может быть использована при получении продуцентов других аминокислот с разветв ленной боковой цепью – L-лейцина и L-изолейцина, а также D-пантотената.

Об авторах

М. Е. Шереметьева
Национальный исследовательский центр «Курчатовский институт», Курчатовский геномный центр
Россия

Москва



К. Э. Ануфриев
Национальный исследовательский центр «Курчатовский институт», Курчатовский геномный центр
Россия

Москва



Т. М. Хлебодарова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Курчатовский геномный центр ИЦиГ СО РАН
Россия

Новосибирск



Н. А. Колчанов
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Курчатовский геномный центр ИЦиГ СО РАН
Россия

Новосибирск



А. С. Яненко
Национальный исследовательский центр «Курчатовский институт», Курчатовский геномный центр
Россия

Москва



Список литературы

1. Baritugo K.A., Kim H.T., David Y., Choi J.I., Hong S.H., Jeong K.J., Choi J.H., Joo J.C., Park S.J. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery. Appl. Microbiol. Biotechnol. 2018;102(9):3915-3937. DOI 10.1007/s00253-018-8896-6.

2. Bartek T., Blombach B., Lang S., Eikmanns B.J., Wiechert W., Oldiges M., Noh K., Noack S. Comparative C-13 metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum. Appl. Environ. Microbiol. 2011; 77(18):6644-6652. DOI 10.1128/aem.00575-11.

3. Bartek T., Blombach B., Zonnchen E., Makus P., Lang S., Eikmanns B.J., Oldiges M. Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum. Biotechnol. Prog. 2010;26(2):361-371. DOI 10.1002/btpr.345.

4. Bartek T., Makus P., Klein B., Lang S., Oldiges M. Influence of L- isoleucine and pantothenate auxotrophy for L-valine formation in Corynebacterium glutamicum revisited by metabolome analyses. Bioprocess Biosyst. Eng. 2008;31(3):217-225. DOI 10.1007/s00449-008-0202-z.

5. Blombach B., Arndt A., Auchter M., Eikmanns B.J. L-valine production during growth of pyruvate dehydrogenase complex deficient Corynebacterium glutamicum in the presence of ethanol or by inactivation of the transcriptional regulator SugR. Appl. Environ. Microbiol. 2009;75(4):1197-1200. DOI 10.1128/aem.02351-08.

6. Blombach B., Eikmanns B.J. Current knowledge on isobutanol production with Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum. Bioeng. Bugs. 2011;2(6):346-350. DOI 10.4161/bbug.2.6.17845.

7. Blombach B., Schreiner M.E., Bartek T., Oldiges M., Eikmanns B.J. Corynebacterium glutamicum tailored for high-yield L-valine production. Appl. Microbiol. Biotechnol. 2008;79(3):471-479. DOI 10.1007/s00253-008-1444-z.

8. Blombach B., Schreiner M.E., Holátko J., Bartek T., Oldiges M., Eikmanns B.J. (L)-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl. Environ. Microbiol. 2007;73(7):2079-2084. DOI 10.1128/aem.02826-06.

9. Boles E., Ebbighausen H., Eikmanns B., Krämer R. Unusual regulation of the uptake system for branched-chain amino acids in Corynebacterium glutamicum. Arch. Microbiol. 1993;159:147-152. DOI 10.1007/BF00250275.

10. Bommareddy R.R., Chen Z., Rappert S., Zeng A.P. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab. Eng. 2014;25: 30-37. DOI 10.1016/j.ymben.2014.06.005.

11. Brinkman A.B., Ettema T.J., de Vos W.M., van der Oost J. The Lrp family of transcriptional regulators. Mol. Microbiol. 2003;48(2): 287-294. DOI 10.1046/j.1365-2958.2003.03442.x.

12. Buchholz J., Schwentner A., Brunnenkan B., Gabris C., Grimm S., Gerst meir R., Takors R., Eikmanns B.J., Blombach B. Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L- lysine, L-valine, and 2-ketoisovalerate. Appl. Environ. Microbiol. 2013;79(18):5566-5575. DOI 10.1128/AEM.01741-13.

13. Burkovski A. I do it my way: regulation of ammonium uptake and ammonium assimilation in Corynebacterium glutamicum. Arch. Microbiol. 2003;179(2):83-88. DOI 10.1007/s00203-002-0505-4.

14. Chassagnole C., Létisse F., Diano A., Lindley N.D. Carbon flux analysis in a pantothenate overproducing Corynebacterium glutamicum strain. Mol. Biol. Rep. 2002;29(1-2):129-134. DOI 10.1023/a:1020353124066.

15. Che L., Xu M., Gao K., Wang L., Yang X., Wen X., Xiao H., Li M., Jiang Z. Mammary tissue proteomics in a pig model indicates that dietary valine supplementation increases milk fat content via increased de novo synthesis of fatty acid. Food Sci. Nutr. 2021;9(11): 6213-6223. DOI 10.1002/fsn3.2574.

16. Chen C., Li Y., Hu J., Dong X., Wang X. Metabolic engineering of Corynebacterium glutamicum ATCC13869 for L-valine production. Metab. Eng. 2015;29:66-75. DOI 10.1016/j.ymben.2015.03.004.

17. Chen X.H., Liu S.R., Peng B., Li D., Cheng Z.X., Zhu J.X., Zhang S., Peng Y.M., Li H., Zhang T.T., Peng X.X. Exogenous L-valine promotes phagocytosis to kill multidrug-resistant bacterial pathogens. Front. Immunol. 2017;8:207. DOI 10.3389/fimmu.2017.00207.

18. Cordes C., Möckel B., Eggeling L., Sahm H. Cloning, organization and functional analysis of ilvA, ilvB and ilvC genes from Corynebacterium glutamicum. Gene. 1992;112(1):113-116. DOI 10.1016/03781119(92)90311-c.

19. Denina I., Paegle L., Prouza M., Holátko J., Pátek M., Nesvera J., Ruklisha M. Factors enhancing L-valine production by the growth-limited L-isoleucine auxotrophic strain Corynebacterium glutamicum DeltailvA DeltapanB ilvNM13 (pECKAilvBNC). J. Ind. Microbiol. Biotechnol. 2010;37(7):689-699. DOI 10.1007/s10295-010-0712-y.

20. D’Este M., Alvarado-Morales M., Angelidaki I. Amino acids production focusing on fermentation technologies – A review. Biotechnol. Adv. 2017;36(1):14-25. DOI 10.1016/j.biotechadv.2017.09.001.

21. Dimou A., Tsimihodimos V., Bairaktari E. The critical role of the branched chain amino acids (BCAAs) catabolism-regulating enzymes, branched-chain aminotransferase (BCAT) and branchedchain α-keto acid dehydrogenase (BCKD), in human pathophys iology. Int. J. Mol. Sci. 2022;23(7):4022. DOI 10.3390/ijms23074022.

22. Dostálová H., Holatko J., Busche T., Rucká L., Rapoport A., Halada P., Nešvera J., Kalinowski J., Pátek M. Assignment of sigma factors of RNA polymerase to promoters in Corynebacterium glutamicum. AMB Express. 2017;7(1):133. DOI 10.1186/s13568-017-0436-8.

23. Dusch N., Pühler A., Kalinowski J. Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli. Appl. Environ. Microbiol. 1999;65(4):1530-1539. DOI 10.1128/AEM.65.4.1530-1539.1999.

24. Ebbighausen H., Weil B., Krämer R. Transport of branched-chain amino acids in Corynebacterium glutamicum. Arch. Microbiol. 1989; 151(3):238-244. DOI 10.1007/BF00413136.

25. Eggeling I., Cordes C., Eggeling L., Sahm H. Regulation of acetohydroxy acid synthase in Corynebacterium glutamicum during fermentation of alpha-ketobutyrate to L-isoleucine. Appl. Microbiol. Biotechnol. 1987;25(4):346-351. DOI 10.1007/BF00252545.

26. Eggeling L. Exporters for production of amino acids and other small molecules. Adv. Biochem. Eng. Biotechnol. 2016;159:199-225. DOI 10.1007/10_2016_32.

27. Eggeling L., Sahm H. New ubiquitous translocators: amino acid export by Corynebacterium glutamicum and Escherichia coli. Arch. Microbiol. 2003;180(3):155-160. DOI 10.1007/s00203-003-0581-0.

28. Eikmanns B., Blombach B. The pyruvate dehydrogenase complex of Corynebacterium glutamicum: an attractive target for metabolic engineering. J. Biotechnol. 2014;192(Pt. B):339-345. DOI 10.1016/j.jbiotec.2013.12.019.

29. Elišáková V., Patek M., Holátko J., Nesvera J.N., Leyval D., Goergen J.L., Delaunay S. Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl. Environ. Microbiol. 2005;71(1):207-213. DOI 10.1128/aem.71.1.207-213.2005.

30. Engels V., Wendisch V.F. The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum. J. Bacteriol. 2007;189(8):2955-2966. DOI 10.1128/JB.01596-06.

31. Goldbeck O., Eck A.W., Seibold G.M. Real time monitoring of NADPH concentrations in Corynebacterium glutamicum and Esche richia coli via the genetically encoded sensor mBFP. Front. Microbiol. 2018;9:2564. DOI 10.3389/fmicb.2018.02564.

32. Guo Y., Han M., Xu J., Zhang W. Analysis of acetohydroxyacid synthase variants from branched-chain amino acids-producing strains and their effects on the synthesis of branched-chain amino acids in Corynebacterium glutamicum. Protein Expr. Purif. 2015;109:106112. DOI 10.1016/j.pep.2015.02.006.

33. Guo Y., Han M., Yan W., Xu J., Zhang W. Generation of branched-chain amino acids resistant Corynebacterium glutamicum acetohydroxy acid synthase by site-directed mutagenesis. Biotechnol. Bioproc. Eng. 2014;19:456-467. DOI 10.1007/s12257-013-0843-x.

34. Han G., Xu N., Sun X., Chen J., Chen C., Wang Q. Improvement of L-valine production by atmospheric and room temperature plasma mutagenesis and high-throughput screening in Corynebacterium glutamicum. ACS Omega. 2020;5(10):4751-4758. DOI 10.1021/acsomega.9b02747.

35. Harst A., Albaum S.P., Bojarzyn T., Trötschel C., Poetsch A. Proteomics of FACS-sorted heterogeneous Corynebacterium glutamicum populations. J. Proteomics. 2017;160:1-7. DOI 10.1016/j.jprot. 2017.03.01.

36. Hasegawa S., Suda M., Uematsu K., Natsuma Y., Hiraga K., Jojima T., Inui M., Yukawa H. Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions. Appl. Environ. Microbiol. 2013;79(4):1250-1257. DOI 10.1128/aem.02806-12.

37. Hasegawa S., Uematsu K., Natsuma Y., Suda M., Hiraga K., Jojima T., Inui M., Yukawa H. Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions. Appl. Environ. Microbiol. 2012;78(3):865875. DOI 10.1128/aem.07056-11.

38. Hemmerich J., Tenhaef N., Steffens C., Kappelmann J., Weiske M., Reich S.J., Wiechert W., Oldiges M., Noack S. Less sacrifice, more insight: Repeated low-volume sampling of microbioreactor cultivations enables accelerated deep phenotyping of microbial strain libraries. Biotechnol. J. 2018;14(9):e1800428. DOI 10.1002/biot.201800428.

39. Hermann T., Kramer R. Mechanism and regulation of isoleucine excretion in Corynebacterium glutamicum. Appl. Environ. Microbiol. 1996;62(9):3238-3244. DOI 10.1128/aem.62.9.3238-3244.1996.

40. Holátko J., Elišáková V., Prouza M., Sobotka M., Nesvera J., Patek M. Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J. Biotechnol. 2009;139(3):203-210. DOI 10.1016/j.jbiotec.2008.12.005.

41. Holeček M. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutr. Metab. (Lond). 2018;15:33. DOI 10.1186/s12986-018-0271-1.

42. Holen J.P., Tokach M.D., Woodworth J.C., DeRouchey J.M., Gebhardt J.T., Titgemeyer E.C., Goodband R.D. A review of branchedchain amino acids in lactation diets on sow and litter growth performance. Transl. Anim. Sci. 2022;6(1):txac017. DOI 10.1093/tas/txac017.

43. Hou X.H., Chen X.D., Zhang Y., Qian H., Zhang W.G. L-valine production with minimization of by-products’ synthesis in Corynebacterium glutamicum and Brevibacterium flavum. Amino Acids. 2012a; 43(6):2301-2311. DOI 10.1007/s00726-012-1308-9.

44. Hou X.H., Ge X.Y., Wu D., Qian H., Zhang W.G. Improvement of L- valine production at high temperature in Brevibacterium flavum by overexpressing ilvEBN(r)C genes. J. Ind. Microbiol. Biotechnol. 2012b;39(1):63-72. DOI 10.1007/s10295-011-1000-1.

45. Jian H., Miao S., Liu Y., Li H., Zhou W., Wang X., Dong X., Zou X. Effects of dietary valine levels on production performance, egg quality, antioxidant capacity, immunity, and intestinal amino acid absorption of laying hens during the peak lay period. Animals (Basel). 2021;11(7):1972. DOI 10.3390/ani11071972.

46. Jiang L.Y., Zhang Y.Y., Li Z., Liu J.Z. Metabolic engineering of Corynebacterium glutamicum for increasing the production of L-ornithine by increasing NADPH availability. J. Ind. Microbiol. Biotechnol. 2013;40(10):1143-1151. DOI 10.1007/s10295-013-1306-2.

47. Jojima T., Fujii M., Mori E., Inui M., Yukawa H. Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation. Appl. Microbiol. Biotechnol. 2010;87(1):159-165. DOI 10.1007/s00253-010-2493-7.

48. Jojima T., Noburyu R., Sasaki M., Tajima T., Suda M., Yukawa H., Inui M. Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 2015;99(3):1165-1172. DOI 10.1007/s00253-014-6223-4.

49. Jones C.M., Hernandez Lozada N.J., Pfleger B.F. Efflux systems in bacteria and their metabolic engineering applications. Appl. Microbiol. Biotechnol. 2015;99(22):9381-9393. DOI 10.1007/s00253-0156963-9.

50. Kabus A., Georgi T., Wendisch V.F., Bott M. Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation. Appl. Microbiol. Biotechnol. 2007;75(1):47-53. DOI 10.1007/s00253-006-0804-9.

51. Kainulainen H., Hulmi J.J., Kujala U.M. Potential role of branchedchain amino acid catabolism in regulating fat oxidation. Exerc. Sport Sci. Rev. 2013;41(4):194-200. DOI 10.1097/JES.0b013e3182a4e6b6.

52. Kang K.Y., Kim M.S., Lee M.S., Oh J.J., An S., Park D., Heo I.K., Lee H.K., Song S.W., Kim S.D. Genotoxicity and acute toxicity evaluation of the three amino acid additives with Corynebacterium glutamicum biomass. Toxicol. Rep. 2020;7:241-253. DOI 10.1016/j.toxrep.2020.01.013.

53. Karau A., Grayson I. Amino acids in human and animal nutrition. Adv. Biochem. Eng. Biotechnol. 2014;143:189-228. DOI 10.1007/10_2014_269.

54. Kataoka N., Vangnai A.S., Pongtharangkul T., Yakushi T., Wada M., Yokota A., Matsushita K. Engineering of Corynebacterium glutamicum as a prototrophic pyruvate-producing strain: Characterization of a ramA-deficient mutant and its application for metabolic engineering. Biosci. Biotechnol. Biochem. 2019;83(2):372-380. DOI 10.1080/09168451.2018.1527211.

55. Kawaguchi T., Izumi N., Charlton M.R., Sata M. Branched-chain amino acids as pharmacological nutrients in chronic liver disease. Hepatology. 2011;54(3):1063-1070. DOI 10.1002/hep.24412.

56. Keilhauer C., Eggeling L., Sahm H. Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN- ilvC ope ron. J. Bacteriol. 1993;175(17):5595-5603. DOI 10.1128/jb.175.17.5595-5603.1993.

57. Kennerknecht N., Sahm H., Yen M.R., Pátek M., Saier M.H. Jr., Eggeling L. Export of L-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator fam ily. J. Bacteriol. 2002;184(14):3947-3956. DOI 10.1128/jb.184.14.3947-3956.2002.

58. Koduru L., Lakshmanan M., Lee D.Y. In silico model-guided identification of transcriptional regulator targets for efficient strain design. Microb. Cell Fact. 2018;17(1):167. DOI 10.1186/s12934-018-1015-7.

59. Krause F.S., Blombach B., Eikmanns B.J. Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production. Appl. Environ. Microbiol. 2010a;76(24):8053-8061. DOI 10.1128/aem.01710-10.

60. Krause F.S., Henrich A., Blombach B., Kramer R., Eikmanns B.J., Seibold G.M. Increased glucose utilization in Corynebacterium glutamicum by use of maltose, and its application for the improvement of L-valine productivity. Appl. Environ. Microbiol. 2010b;76(1): 370-374. DOI 10.1128/aem.01553-09.

61. Lange C., Mustafi N., Frunzke J., Kennerknecht N., Wessel M., Bott M., Wendisch V.F. Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for L-methionine and branched-chain amino acids. J. Biotechnol. 2012;158(4):231-241. DOI 10.1016/j.jbiotec.2011.06.003.

62. Lange J., Münch E., Müller J., Busche T., Kalinowski J., Takors R., Blombach B. Deciphering the adaptation of Corynebacterium glutamicum in transition from aerobiosis via microaerobiosis to anaerobiosis. Genes (Basel). 2018;9(6):297. DOI 2018.10.3390/genes 9060297.

63. Lee D., Hong J., Kim K.J. Crystal structure and biochemical characterization of ketol-acid reductoisomerase from Corynebacterium glutamicum. J. Agric. Food Chem. 2019;67(31):8527-8535. DOI 10.1021/acs.jafc.9b03262.

64. Leuchtenberger W., Huthmacher K., Drauz K. Biotechnological production of amino acids and derivatives: current status and prospects. Appl. Microbiol. Biotechnol. 2005;69(1):1-8. DOI 10.1007/s00253005-0155-y.

65. Leyval D., Uy D., Delaunay S., Goergen J.L., Engasser J.M. Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. J. Biotechnol. 2003;104(1-3):241-252. DOI 10.1016/s01681656(03)00162-7.

66. Li N., Xu S., Du G., Chen J., Zhou J. Efficient production of L-homoserine in Corynebacterium glutamicum ATCC 13032 by redistribution of metabolic flux. Biochem. Eng. J. 2020a;161:107665. DOI 10.1016/j.bej.2020.107665.

67. Li N., Zeng W., Xu S., Zhou J. Obtaining a series of native gra dient promoter-5′-UTR sequences in Corynebacterium glutamicum ATCC 13032. Microb. Cell. Fact. 2020b;19(1):120. DOI 10.1186/s12934020-01376-3.

68. Li Y., Cong H., Liu B., Song J., Sun X., Zhang J., Yang Q. Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level. Antonie Van Leeuwenhoek. 2016;109(9):1185-1197. DOI 10.1007/s10482-016-0719-0.

69. Lindner S.N., Petrov D.P., Hagmann C.T., Henrich A., Krämer R., Eikmanns B.J., Wendisch V.F., Seibold G.M. Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains. Appl. Environ. Microbiol. 2013;79(8):2588-2595. DOI 10.1128/AEM.03231-12.

70. Liu Y., Li Y., Wang X. Acetohydroxyacid synthases: evolution, structure, and function. Appl. Microbiol. Biotechnol. 2016;100(20): 8633-8649. DOI 10.1007/s00253-016-7809-9.

71. Liu Y., Wang X., Zhan J., Hu J. The 138th residue of acetohydroxyacid synthase in Corynebacterium glutamicum is important for the substrate binding specificity. Enzyme Microb. Technol. 2019;129: 109357. DOI 10.1016/j.enzmictec.2019.06.001.

72. Liu Y., Zhang C., Zhang Y., Jiang X., Liang Y., Wang H., Li Y., Sun G. Association between excessive dietary branched-chain amino acids intake and hypertension risk in chinese population. Nutrients. 2022; 14(13):2582. DOI 10.3390/nu14132582.

73. Ma Y., Chen Q., Cui Y., Du L., Shi T., Xu Q., Ma Q., Xie X., Chen N. Comparative genomic and genetic functional analysis of industrial L-leucine- and L-valine-producing Corynebacterium glutamicum strains. J. Microbiol. Biotechnol. 2018a;28(11):1916-1927. DOI 10.4014/jmb.1805.05013.

74. Ma Y., Cui Y., Du L., Liu X., Xie X., Chen N. Identification and application of a growth-regulated promoter for improving L-valine production in Corynebacterium glutamicum. Microb. Cell. Fact. 2018b;17(1):185. DOI 10.1186/s12934-018-1031-7.

75. Magnus J.B., Oldiges M., Takors R. The identification of enzyme targets for the optimization of a valine producing Corynebacterium glutamicum strain using a kinetic model. Biotechnol. Prog. 2009; 25(3):754-762. DOI 10.1002/btpr.184.

76. Marienhagen J., Eggeling L. Metabolic function of Corynebacterium glutamicum aminotransferases AlaT and AvtA and impact on L-valine production. Appl. Environ. Microbiol. 2008;74(24):7457-7462. DOI 10.1128/AEM.01025-08.

77. Marienhagen J., Kennerknecht N., Sahm H., Eggeling L. Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum. J. Bacteriol. 2005; 187(22):7639-7646. DOI 10.1128/JB.187.22.7639-7646.2005.

78. Marx A., Striegel K., de Graaf A.A., Sahm H., Eggeling L. Response of the central metabolism of Corynebacterium glutamicum to different flux burdens. Biotechnol. Bioeng. 1997;56(2):168-180. DOI 10.1002/(SICI)1097-0290(19971020)56:2<168::AID-BIT6>3.0.CO;2-N.

79. Michel A., Koch-Koerfges A., Krumbach K., Brocker M., Bott M. Anaerobic growth of Corynebacterium glutamicum via mixed-acid fermentation. Appl. Environ. Microbiol. 2015;81(21):7496-7508. DOI 10.1128/AEM.02413-15.

80. Möckel B., Eggeling L., Sahm H. Functional and structural analyses of threonine dehydratase from Corynebacterium glutamicum. J. Bacteriol. 1992;174(24):8065-8072. DOI 10.1128/jb.174.24.8065-8072. 1992.

81. Morbach S., Junger C., Sahm H., Eggeling L. Attenuation control of ilvBNC in Corynebacterium glutamicum: evidence of leader peptide formation without the presence of a ribosome binding site. J. Biosci. Bioeng. 2000;90(5):501-507. DOI 10.1016/S1389-1723(01)80030-X.

82. Moritz B., Striegel K., De Graaf A.A., Sahm H. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Eur. J. Biochem. 2000;267(12):3442-3452. DOI 10.1046/j.1432-1327.2000.01354.x.

83. Okino S., Suda M., Fujikura K., Inui M., Yukawa H. Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl. Microbiol. Biotechnol. 2008;78(3):449-454. DOI 10.1007/s00253-007-1336-7.

84. Park J.H., Lee S.Y. Fermentative production of branched chain amino acids: a focus on metabolic engineering. Appl. Microbiol. Biotechnol. 2010;85(3):491-506. DOI 10.1007/s00253-009-2307-y.

85. Pérez-García F., Jorge J.M.P., Dreyszas A., Risse J.M., Wendisch V.F. Efficient production of the dicarboxylic acid glutarate by Corynebacterium glutamicum via a novel synthetic pathway. Front. Microbiol. 2018;9:2589. DOI 10.3389/fmicb.2018.02589.

86. Pérez-García F., Wendisch V.F. Transport and metabolic engineering of the cell factory Corynebacterium glutamicum. FEMS Microbiol. Lett. 2018;365(16):fny166. DOI 10.1093/femsle/fny166.

87. Qin T., Hu X., Hu J., Wang X. Metabolic engineering of Corynebacterium glutamicum strain ATCC13032 to produce L-methionine. Biotechnol. Appl. Biochem. 2015;62(4):563-673. DOI 10.1002/bab.1290.

88. Radmacher E., Vaitsikova A., Burger U., Krumbach K., Sahm H., Eggeling L. Linking central metabolism with increased pathway flux: L-valine accumulation by Corynebacterium glutamicum. Appl. Environ. Microbiol. 2002;68(5):2246-2250. DOI 10.1128/aem.68.5.2246-2250.2002.

89. Ruklisha M., Paegle L., Denina I. L-Valine biosynthesis during batch and fed-batch cultivations of Corynebacterium glutamicum: Relationship between changes in bacterial growth rate and intracellular metabolism. Proc. Biochem. 2007;40(4):634-640. DOI 10.1016/j.procbio.2006.11.008.

90. Ryabchenko L.E., Gerasimova T.V., Leonova T.E., Kalinina T.I., She remetyeva M.E., Anufriev K.E., Yanenko A.S. Patent RU 2753996 C1. Bacterium Corynebacterium glutamicum with increased ability to produce L-valine and method for producing L- valine using this bacterium. Date of publication: 25.08.2021. Bull. No. 24. (in Russian)

91. Sahm H., Eggeling L. D-pantothenate synthesis in Corynebacterium glutamicum and use of panBC and genes encoding L-valine synthesis for D-pantothenate overproduction. Appl. Environ. Microbiol. 1999;65(5):1973-1979. DOI 10.1128/AEM.65.5.1973-1979.1999.

92. Savrasova E.A., Stoynova N.V. Application of leucine dehydrogenase Bcd from Bacillus subtilis for L-valine synthesis in Escherichia coli under microaerobic conditions. Heliyon. 2019;5(4):e01406. DOI 10.1016/j.heliyon.2019.e01406.

93. Schwentner A., Feith A., Münch E., Busche T., Rückert C., Kalinowski J., Takors R., Blombach B. Metabolic engineering to guide evolution – Creating a novel mode for L-valine production with Corynebacterium glutamicum. Metab. Eng. 2018;47:31-41. DOI 10.1016/j.ymben.2018.02.015.

94. Shi F., Li K., Huan X., Wang X. Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Appl. Biochem. Biotechnol. 2013;171(2):504-521. DOI 10.1007/s12010-013-0389-6.

95. Shi F., Luan M., Li Y. Ribosomal binding site sequences and promoters for expressing glutamate decarboxylase and producing γ-aminobutyrate in Corynebacterium glutamicum. AMB Express. 2018; 8(1):61. DOI 10.1186/s13568-018-0595-2.

96. Shou J., Chen P.J., Xiao W.H. The effects of BCAAs on insulin resistance in athletes. J. Nutr. Sci. Vitaminol. (Tokyo). 2019;65(5):383389. DOI 10.3177/jnsv.65.383.

97. Siedler S., Lindner S.N., Bringer S., Wendisch V.F., Bott M. Reductive whole-cell biotransformation with Corynebacterium glutamicum: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using pfkA and gapA deletion. Appl. Microbiol. Biotechnol. 2013;97(1):143-152. DOI 10.1007/s00253012-4314-7.

98. Tarutina M.G., Raevskaya N.M., Shustikova T.E., Ryabchenko L.E., Yanenko A.S. Assessment of effectiveness of Corynebacterium glutamicum promoters and their application for the enhancement of gene activity in lysine-producing bacteria. Appl. Biochem. Microbiol. 2016;52(7):692-698. DOI 10.1134/S0003683816070073.

99. Tauch A., Hermann T., Burkovski A., Kramer R., Puhler A., Kalinowski J. Isoleucine uptake in Corynebacterium glutamicum ATCC 13032 is directed by the brnQ gene product. Arch. Microbiol. 1998;169(4):303-312. DOI 10.1007/s002030050576.

100. Trotschel C., Deutenberg D., Bathe B., Burkovski A., Kramer R. Characterization of methionine export in Corynebacterium glutamicum. J. Bacteriol. 2005;187(11):3786-3794. DOI 10.1128/jb.187.11.3786-3794.2005.

101. Vasicová P., Pátek M., Nesvera J., Sahm H., Eikmanns B. Analysis of the Corynebacterium glutamicum dapA promoter. J. Bacteriol. 1999; 181(19):6188-6191. DOI 10.1128/JB.181.19.6188-6191.1999.

102. Vogt M., Haas S., Klaffl S., Polen T., Eggeling L., van Ooyen J., Bott M. Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction. Metab. Eng. 2014;22:40-52. DOI 10.1016/j.ymben.2013.12.001.

103. Wang X., Zhang H., Quinn P.J. Production of L-valine from metabolically engineered Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 2018;102(10):4319-4330. DOI 10.1007/s00253-0188952-2.

104. Wang Y.Y., Shi K., Chen P., Zhang F., Xu J.Z., Zhang W.G. Rational modification of the carbon metabolism of Corynebacterium glutamicum to enhance L-leucine production. J. Ind. Microbiol. Biotechnol. 2020;47(6-7):485-495. DOI 10.1007/s10295-020-02282-8.

105. Wang Y.Y., Xu J.Z., Zhang W.G. Metabolic engineering of L-leucine production in Escherichia coli and Corynebacterium glutamicum: a review. Crit. Rev. Biotechnol. 2019a;39(5):633-647. DOI 10.1080/07388551.2019.1577214.

106. Wang Y.Y., Zhang F., Xu J.Z., Zhang W.G., Chen X.L., Liu L.M. Improvement of L-leucine production in Corynebacterium glutamicum by altering the redox flux. Int. J. Mol. Sci. 2019b;20(8):2020. DOI 10.3390/ijms20082020.

107. Wang Z., Chen T., Ma X., Shen Z., Zhao X. Enhancement of riboflavin production with Bacillus subtilis by expression and site-directed mutagenesis of zwf and gnd gene from Corynebacterium glutamicum. Bioresour. Technol. 2011;102(4):3934-3940. DOI 10.1016/j.biortech.2010.11.120.

108. Wei H., Ma Y., Chen Q., Cui Y., Du L., Ma Q., Li Y., Xie X., Chen N. Identification and application of a novel strong constitutive promoter in Corynebacterium glutamicum. Ann. Microbiol. 2018;68:375-382. DOI 10.1007/s13213-018-1344-0.

109. Wieschalka S., Blombach B., Bott M., Eikmanns B.J. Bio-based production of organic acids with Corynebacterium glutamicum. Microb. Biotechnol. 2012;6(2):87-102. DOI 10.1111/1751-7915.12013.

110. Xie X., Xu L., Shi J., Xu Q., Chen N. Effect of transport proteins on L-isoleucine production with the L-isoleucine-producing strain Corynebacterium glutamicum YILW. J. Ind. Microbiol. Biotechnol. 2012;39(10):1549-1556. DOI 10.1007/s10295-012-1155-4.

111. Xu J., Han M., Zhang J., Guo Y., Zhang W. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway. Amino Acids. 2014;46(9):2165-2175. DOI 10.1007/s00726-014-1768-1.

112. Xu J.Z., Yu H.B., Han M., Liu L.M., Zhang W.G. Metabolic engineering of glucose uptake systems in Corynebacterium glutamicum for improving the efficiency of L-lysine production. J. Ind. Microbiol. Biotechnol. 2019;46(7):937-949. DOI 10.1007/s10295-019-02170-w.

113. Xu N., Wei L., Liu J. Recent advances in the applications of promoter engineering for the optimization of metabolite biosynthesis. World J. Microbiol. Biotechnol. 2019;35(2):33. DOI 10.1007/s11274-0192606-0.

114. Yamamoto K., Tsuchisaka A., Yukawa H. Branched-chain amino acids. Adv. Biochem. Eng. Biotechnol. 2017;159:103-128. DOI 10.1007/10_2016_28.

115. Yamamoto S., Suda M., Niimi S., Inui M., Yukawa H. Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation. Biotechnol. Bioeng. 2013; 110(11):2938-2948. DOI 10.1002/bit.24961.

116. Yin L., Shi F., Hu X., Chen C., Wang X. Increasing L-isoleucine production in Corynebacterium glutamicum by overexpressing global regulator Lrp and two-component export system BrnFE. J. Appl. Microbiol. 2013;114(5):1369-1377. DOI 10.1111/jam.12141.

117. Yin L., Zhao J., Chen C., Xu X., Wang X. Enhancing the carbon flux and NADPH supply to increase L-isoleucine production in Corynebacterium glutamicum. Biotechnol. Bioproc. Eng. 2014;19:132-142. DOI 10.1007/s12257-013-0416-z.

118. Zhan M., Kan B., Dong J., Xu G., Han R., Ni Y. Metabolic engineering of Corynebacterium glutamicum for improved L-arginine synthesis by enhancing NADPH supply. J. Ind. Microbiol. Biotechnol. 2019;46(1):45-54. DOI 10.1007/s10295-018-2103-8.

119. Zhang H., Li Y., Wang C., Wang X. Understanding the high L-valine production in Corynebacterium glutamicum VWB-1 using transcriptomics and proteomics. Sci. Rep. 2018;8(1):3632. DOI 10.1038/s41598-018-21926-5.

120. Zhang J., Qian F., Dong F., Wang Q., Yang J., Jiang Y., Yang S. De novo engineering of Corynebacterium glutamicum for L-proline production. ACS Synth. Biol. 2020;9(7):1897-1906. DOI 10.1021/acssynbio.0c00249.

121. Zhang S., Liu D., Mao Z., Mao Y., Ma H., Chen T., Zhao X., Wang Z. Model-based reconstruction of synthetic promoter library in Corynebacterium glutamicum. Biotechnol. Lett. 2018;40(5):819-827. DOI 10.1007/s10529-018-2539-y.

122. Zhang Y., Liu Y., Zhang S., Ma W., Wang J., Yin L., Wang X. Metabolic engineering of Corynebacterium glutamicum WM001 to improve L-isoleucine production. Biotechnol. Appl. Biochem. 2021;68(3): 568-584. DOI 10.1002/bab.1963.

123. Zheng L., Zuo F., Zhao S., He P., Wei H., Xiang Q., Pang J., Peng J. Dietary supplementation of branched-chain amino acids increases muscle net amino acid fluxes through elevating their substrate availability and intramuscular catabolism in young pigs. Br. J. Nutr. 2017;117(7):911-922. DOI 10.1017/S0007114517000757.


Рецензия

Просмотров: 1135


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)