Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Study of resistance to leaf and stem rusts in Triticum aestivum–Aegilops speltoides lines

https://doi.org/10.18699/VJ15.020

Abstract

Presently, the use of bread wheat introgression lines resistant to pathogens in practical breeding
is hampered by the lack of their cytogenetic characteristics, data on the genetic control of disease resistance, and influence of alien genetic material 
on grain productivity and quality. For the solution of these problems, two wheat–Aegilops speltoides lines, L195 and L200, developed at ARISER and resistant to leaf and stem rusts were studied. These lines were produced by crossing of spring bread wheat cultivars to line L26b-4. Cytogenetic analysis of the lines involved C-banding, meiotic analyses, and FISH with pAs1 and Fat. It allowed the rust resistance genes, efficient against both rust types, to be mapped to a 2D-2S translocation in both lines. Genetic analysis revealed tight linkage of leaf rust resistance genes from Ae. speltoides to gametocidal genes and absence of susceptible plants from the F2 hybrids and subsequent generations. Exceptions were found only in hybrid combinations with lines L2032 and L583: occasional susceptible plants were noted  in the F2 and subsequent generations. Evaluation of lines L195 and L200 revealed high resistance to Ug99 + Lr24 (TTKST) and a local Saratov population of stem rust. The prebreeding studies of lines L195 and L200 showed their benefits in breeding for grain productivity in comparison with the recipient cultivar L503 and good bread-making quality. Due to the complex of agronomical traits and high resistance to leaf and stem rusts, lines L195 and L200 can be considered promising donors for commercial bread wheat breeding. 

About the Authors

S. N. Sibikeev
Agricultural Research Institute for South-East Regions of Russia, Saratov, Russia
Russian Federation


S. A. Voronina
Agricultural Research Institute for South-East Regions of Russia, Saratov, Russia
Russian Federation


E. D. Badaeva
Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
Russian Federation


A. E. Druzhin
Agricultural Research Institute for South-East Regions of Russia, Saratov, Russia
Russian Federation


References

1. Адонина И.Г., Петраш Н.В., Тимонова Е.М., Христов Ю.А., Салина Е.А. Создание и изучение устойчивых к листовой ржавчине линий мягкой пшеницы с транслокациями от Aegilops speltoides Tausch. Генетика. 2012;48(4):488-494.

2. Гультяева Е.И., Иванова О.В., Маркелова Т.С., Сибикеев С.Н. Идентификация генов устойчивости к бурой ржавчине у интрогрессивных сортов и линий мягкой пшеницы, созданных в НИИСХ Юго-Востока. Вестник защиты растений. 2012;(1):38-44.

3. Доспехов Б.А. Методика полевого опыта (с основами статистической обработки результатов исследований результатов исследований). М.: Агропромиздат, 1985.

4. Одинцова И.Г., Агафонова Н.А., Богуславский Р.Л. Интрогрессивные линии мягкой пшеницы с устойчивостью к бурой ржавчине, переданной от Aegilops speltoides. Исходный материал и проблемы селекции пшеницы и тритикале: Сб. науч. тр. по прикл. ботан., генет. и селекции. Л.: ВИР, 1991а;142:106-110.

5. Одинцова И.Г., Богуславский Р.Л., Агафонова Н.А. Возможность использования гаметоцидных генов в селекции на устойчивость к болезням. Тез. докл. IX Всесоюзн. совещ. по иммунитету растений к болезням и вредителям. Минск. Сентябрь 1991. Минск, 1991б;2:199-200.

6. Паушева З.П. Практикум по цитологии растений. М.: Агропромиздат., 1988.

7. Badaeva E.D., Badaev N.S., Gill B.S., Filatenko A.A. Intraspecific karyotype divergence in Triticum araraticum. Plant Syst. Evol. 1994;192(1):117-145.

8. Badaeva E.D., Zoshchuk S.A., Paux E., Gay G., Zoshchuk N.V., Roger D., Zelenin A.V., Bernard M., Feuillet C. Fat element – a new marker for chromosome and genome analysis in the Triticeae. Chrom. Res. 2010;18(6):697-709.

9. Kerber E.R., Dyck P.L. Transfer to hexaploid wheat of linked genes for adult – plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops speltoides × Triticum monococcum. Genome. 1990;33:530-537.

10. Labuschagne M.T., Pretorius Z.A., Grobbelaar B. The influence of leaf rust resistance genes Lr29, Lr34, Lr35 and Lr37 on bread making quality in wheat. Euphytica. 2002;124:65-70.

11. Mago R., Verlin D., Zhang P., Bansal U., Bariana H., Jin Y., Ellis J., Hoxha S., Dundas I. Development of wheat-Aegilops speltoides recombinants and simple PCR-based markers for Sr32 and a new stem rust resistance gene on the 2S#1 chromosome. Theor. Appl. Genet. 2013 Dec;126(12):2943-55. Doi: 10.1007/s00122-013-2184-8. Epub 2013Aug 30

12. McIntosh R.A., Yamazaki Y., Dubcovsky J., Roger J., Morris C., Appels R., Xia X.C. Catalogue of Gene Symbols for Wheat. Proc. of the 12th Intern. Wheat Genetics Symp., 8–13 September 2013 Yokohama, Japan.

13. Pradhan G.P., Prasad P.V.V., Fritz A.K., Kirkham M.B., Gill B.S. High temperature tolerance in Aegilops species and its potential transfer to wheat. Crop Sci. 2012;52:292-304.

14. Roelfs A.P., Singh R.P., Saari E.E. Rust Diseases of Wheat. Concepts and Methods of Disease Management. Mexico, 1992. DF: CIMMYT. Schneider A., Molnar I., Molnar-Lang M. Utilization of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica. 2008;163:1-19.

15. Sibikeev S.N., Krupnov V.A., Voronina S.A., Elesin V.A. First report of leaf rust pathotypes virulent to highly effective Lrgenes transferred from Agropyron species to bread wheat. Plant Breeding. 1996;115:276-278.

16. Singh RP., Huerta-Espino J.H., Jin Y., Herrera-Foessel S., Njau P., Wanyera R., Ward R.W. Current resistance sources and breeding strategies to mitigate Ug99 threat. Proc. of the 11th Intern. Wheat Genetics Symp., Brisbane, QLD, Australia. 2008.


Review

Views: 597


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)