CAPS-маркеры в биологии растений


https://doi.org/10.18699/VJ15.026

Полный текст:


Аннотация

Возможности CAPS-маркеров (Cleaved Amplified Polymorphic Sequences – полиморфизм рестрикционных фрагментов амплифицированной ДНК) для решения широкого спектра задач биологии растений способствовали их широкому использованию в последние годы в генетике и селекции растений. В данном обзоре проведен анализ результатов применения CAPS-маркеров за последние 3–5 лет. Особое внимание уделено работам, связанным с изучением генов, контролирующих хозяйственно важные признаки у различных видов растений, а также примерам использования CAPS-маркеров в селекции растений. Обсуждение данных работ предваряется упоминанием основных принципов разработки и анализа CAPS-маркеров, а также рассмотрением достоинств и недостатков данного класса ДНК-маркеров. Использование CAPS-маркеров основано на амплификации фрагмента ДНК при помощи ПЦР со специфическими праймерами и дальнейшем гидролизе с помощью эндонуклеаз рестрикции, продукты которого разделяются с помощью электрофореза в агарозном геле. Функциональные CAPS-маркеры разрабатывают на основе известной нуклеотидной последовательности изучаемого гена для характеристики его строения, функции, экспрессии и регуляции. CAPS-маркеры, основанные на фрагментах ДНК, тесно сцепленных с изучаемыми генами, особенно полезны для маркер-ориентированной селекции (Marker-Assisted Selection, MAS) и широко используются в отборе на устойчивость пшеницы, ячменя, сои, картофеля, томатов и других культурных растений к фитопатогенам. CAPS-маркеры часто применяют при создании генетических карт, а также для точной локализации изучаемых генов. С их использованием были впервые созданы молекулярно-генетические карты некоторых видов растений и картирован целый ряд генов и локусов количественных признаков (QTL), контролирующих тип развития растений, устойчивость к фитопатогенам, качество зерна (у некоторых видов злаков) и форму плодов (у томата). Важное применение CAPS-маркеры находят в филогенетических исследованиях, при изучении генетического полиморфизма, особенно у близких видов. Таким образом, CAPS-маркеры представляют собой эффективный инструмент как в молекулярно-генетических исследованиях, так и в селекции растений. 


Об авторе

Ю. Н. Шавруков
Университет Аделаиды, отделение сельского хозяйства, питания и виноделия, Вайт Кампус, Хартли Гроув, Австралия
Австралия


Список литературы

1. Хлесткина Е.К., Салина Е.А. SNP-маркеры: методы анализа, способы разработки и сравнительная характеристика на примере мягкой пшеницы. Генетика. 2006;42(6):725-736.

2. Akbari M., Wenzl P., Caig V., Carling J., Xia L., Yang S., Uszynski G., Mohler V., Lehmensiek A., Kuchel H., Hayden M.J., Howes N., Sharp P., Vaughan P., Rathmell B., Huttner E., Kilian A. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor. Appl. Genet. 2006;113(8):1409-1420. DOI: 10.1007/s00122-006-0365-4

3. Amar M.H., Biswas M.K., Zhang Z., Guoa W.W. Exploitation of SSR, SRAP and CAPS-SNP markers for genetic diversity of Citrus germplasm collection. Sci. Hortic. 2011;128(3):220-227. DOI: 10. 1016/j.scienta.2011.01.021

4. Azhaguvel P., Rudd J.C., Ma Y., Luo M.C., Weng Y. Fine genetic mapping of greenbug aphid-resistance gene Gb3 in Aegilops tauschii. Theor. Appl. Genet. 2012;124(3):555-564. DOI: 10.1007/s00122011-1728-z

5. Bang H., Kim S., Park S.O., Yooa K.S., Patil B.S. Development of a codominant CAPS marker linked to the Ms locus controlling fertility restoration in onion (Allium cepa L.). Sci. Hortic. 2013;153:42-49. DOI: 10.1016/j.scienta.2013.01.020

6. Beckie H.J., Warwick S.I., Hall L.M., Harker K.N. Pollen-mediated gene flow in wheat fields in Western Canada. AgBioForum. 2012;15(1):36-43.

7. Bevan M.W., Uauy C. Genomics reveals new landscapes for crop improvement. Genome Biol. 2013;14(6):206. DOI: 10.1186/gb-201314-6-206

8. Bogacki P., Peck D.M., Nair R.M., Howie J., Oldach K.H. Genetic analysis of tolerance to Boron toxicity in the legume Medicago truncatula. BMC Plant Biol. 2013;13:54. DOI: 10.1186/1471-2229-13-54

9. Carlier J.D., Sousa N.H., Santo T.E., d’Eeckenbrugge G.C., Leitão J.M. A genetic map of pineapple (Ananas comosus (L.) Merr.) including SCAR, CAPS, SSR and EST-SSR markers. Mol. Breeding. 2012;29(1):245-260. DOI: 10.1007/s11032-010-9543-9

10. Cheng A., Ismail I., Osman M., Hashim H. Simple and rapid molecular techniques for identification of amylose levels in rice varieties. Intern. J. Mol. Sci. 2012;13(5):6156-6166. DOI: 10.3390/ijms13056156

11. Cheng C.M., Stolt P. Basic and applied research on Boehmeria (ramie) utilising CAPS marker technology. Cleaved Amplified Polymorphic Sequences (CAPS) Markers in Plant Biology. Ed. Y. Shavrukov. NOVA Publisher: N.Y., 2014.

12. Cho K.H., Park S.H., Kim K.T., Kim S., Kim J.S., Park B.S., Woo J.G., Lee H.J. Mapping quantitative trait loci (QTL) for clubroot resistance in Brassica rapa L. J. Hort. Sci. Biotechnol. 2012a;87(4):325-333.

13. Cho Y., Lee Y.P., Park B.S., Han T.H., Kim S. Construction of a highresolution linkage map of Rfd1, a restorer-of-fertility locus for cytoplasmic male sterility conferred by DCGMS cytoplasm in radish (Raphanus sativus L.) using synteny between radish and Arabidopsis genomes. Theor. Appl. Genet. 2012b;125(3):467-477. DOI: 10.1007/s00122-012-1846-2

14. Chusreeaeom K., Ariizumi T., Asamizu E., Okabe Y., Shirasawa K., Ezura H. A novel tomato mutant, Solanum lycopersicum elongated fruit1 (Slelf1), exhibits an elongated fruit shape caused by increased cell layers in the proximal region of the ovary. Mol. Genet. Genom. 2014;289(3):399-409. DOI: 10.1007/s00438-014-0822-8

15. Cui Y., Lee M.Y., Huo N., Bragg J., Yan L., Yuan C., Li C., Holditch S.J., Xie J., Luo M.C., Li D., Yu J., Martin J., Schackwitz W., Gu Y.Q., Vogel J.P., Jackson A.O., Liu Z., Garvin D.F. Fine mapping of the Bsr1 barley stripe mosaic virus resistance gene in the model grass Brachypodium distachyon. PLoS ONE. 2012;7(6):e38333. DOI: 10.1371/journal.pone.0038333

16. D’Agostino N., Golas T., van de Geest H., Bombarely A., Dawood T., Zethof J., Driedonks N., Wijnker E., Bargsten J., Nap J.P., Mariani C., Rieu I. Genomic analysis of the native European Solanum species, S. dulcamara. BMC Genomics. 2013;14:356. DOI: 10.1186/14712164-14-356

17. García-Gonzáles R., Alday C.C., Ruz P.C., Gálvez B.C., Rodríguez A.D.A., Berríos M., Villagra E., González G., Gordillo F., Caligari P.D.S. Versatility of CAPS markers: Agriculture and forestry applications. Cleaved Amplified Polymorphic Sequences (CAPS) Markers in Plant Biology. Ed. Y. Shavrukov. NOVA Publisher: N.Y., 2014.

18. Gautami B., Foncéka D., Pandey M.K., Moretzsohn M.C., Sujay V., Qin H., Hong Y., Faye I., Chen X., BhanuPrakash A., Shah T.M., Gowda M.V.C., Nigam S.N., Liang X., Hoisington D.A., Guo B.,Bertioli D.J., Rami J.F., Varshney R.K. An international reference consensus genetic map with 897 marker loci based on 11 mapping populations for tetraploid groundnut (Arachis hypogaea L.). PLoS ONE. 2012;7(7):e41213. DOI: 10.1371/journal.pone.0041213

19. Gonzalez-Cendales Y., Huong D.T.T., Lim G.T.T., McGrath D.J., Catanzariti A.M., Jones D.A. Application of CAPS markers to the mapping and marker-assisted breeding of genes for resistance to Fusarium wilt in tomato. Cleaved Amplified Polymorphic Sequences (CAPS) Markers in Plant Biology. Ed. Y. Shavrukov. NOVA Publisher: N.Y., 2014.

20. Hazarika T.K., Hazarika B.N., Shukla A.C. Genetic variability and phylogenetic relationships studies of genus Citrus L. with the application of molecular markers. Genetic Res. Crop Evol. 2014;61(8): 1441-1454. DOI: 10.1007/s10722-014-0188-0

21. Henry R.J. (Ed.) Molecular Markers in Plants. Wiley Blackwell: New Delhi. 2013.

22. Heubl G. New aspects of DNA-based authentication of Chinese medicinal plants by molecular biological techniques. Planta Medica. 2010;76(17):1963-1974.

23. Heubl G. DNA-based authentication of TCM-plants: current progress and future perspectives. Evidence and National Based Research on Chinese Drugs. Eds H. Wagner, G. Ulrich-Merzenich. Vienna: Springer Vienna, 2013.

24. Hofmann K., Silvar C., Casas A.M., Herz M., Büttner B., Gracia M.P., Contreras-Moreira B., Wallwork H., Igartua E., Schweizer G. Fine mapping of the Rrs1 resistance locus against scald in two large populations derived from Spanish barley landraces. Theor. Appl. Genet. 2013;126(12):3091-3102. DOI: 10.1007/s00122-013-2196-4

25. Hu C.Y., Lee T.C., Tsai H.T., Tsai Y.Z., Lin S.F. Construction of an integrated genetic map based on maternal and paternal lineages of tea (Camellia sinensis). Euphytica. 2013;191(1):141-152. DOI: 10.1007/ s10681-013-0908-0

26. Hu C.Y., Tsai Y.Z., Lin S.F. Development of STS and CAPS markers for variety identification and genetic diversity analysis of tea germplasm in Taiwan. Botanical Studies. 2014;55(1):12. DOI: 10.1186/19993110-55-12

27. Iimure T., Zhou T.S., Hoki T. Development of CAPS markers and its use for malting barley breeding. Cleaved Amplified Polymorphic Sequences (CAPS) Markers in Plant Biology. Ed. Y. Shavrukov. NOVA Publisher: N.Y., 2014.

28. Ince A.G., Karaca M., Elmasulu S.Y. New microsatellite and CAPS-microsatellite markers for clarifying taxonomic and phylogenetic relationships within Origanum L. Mol. Breeding. 2014;34(2):643-654. DOI: 10.1007/s11032-014-0064-9

29. Jahani M., Nematzadeh G., Dolatabadi B., Hashemi S.H., Mohammadi-Nejad G. Identification and validation of functional markers in a global rice collection by association mapping. Genome. 2014;57(6):355-362. DOI: 10.1139/gen-2014-0044

30. Jehan T., Lakhanpaul S. Single nucleotide polymorphism (SNP) – methods and applications in plant genetics: a review. Indian J. Biotechnol. 2006;5(4):435-459.

31. Jiang Y., Jiang Q., Hao C., Hou J., Wang L., Zhang H., Zhang S., Chen X., Zhang X. A yield-associated gene TaCWI, in wheat: its function, selection and evolution in global breeding revealed by haplotype analysis. Theor. Appl. Genet. 2015;128(1):131-143. DOI: 10.1007/ s00122-014-2417-5

32. Julián O., Herráiz J., Corella S., di-Lolli I., Soler S., Díez M.J., Pérezde-Castro A. Initial development of a set of introgression lines from Solanum peruvianum PI 126944 into tomato: Exploitation of resistance to viruses. Euphytica. 2013;193(2):183-196. DOI: 10.1007/ s10681-013-0896-0

33. Jun T.H., Mian M.A.R., Kang S.T., Michel A.P. Genetic mapping of the powdery mildew resistance gene in soybean PI 567301B. Theor. Appl. Genet. 2012;125(6):1159-1168. DOI: 10.1007/s00122-012-1902-y

34. Kato T., Toyota M., Tasaka M., Morita M.T. Mini-history of map-based cloning in Arabidopsis // Cleaved Amplified Polymorphic Sequences (CAPS) Markers in Plant Biology. Ed. Y. Shavrukov. NOVA Publisher: N.Y., 2014.

35. Kilian A., Huttner E., Wenzl P., Jaccoud D., Carling J., Caig V., Evers M., Heller-Uszynska K., Cayla C., Patarapuwadol S., Xia L., Yang S., Thomson B. The fast and the cheap: SNP and DArT-based whole genome profiling for crop improvement. In the Wake of the Double Helix: From the Green Revolution to the Gene Revolution. Proceedings of the International Congress. 27–31 May, 2003. Ed. R. Tuberosa, R.L Phillips, M. Gale. Avenue Media: Bologna, Italy, 2005;443-461.

36. Kim K.H., Ahn S.G., Hwang J.H., Choi Y.M., Moon H.S., Park Y.H. Inheritance of resistance to powdery mildew in the watermelon and development of a molecular marker for selecting resistant plants. Hort. Environ. Biotechnol. 2013;54(2):134-140. DOI: 10.1007/s13580013-0156-1

37. Konieczny A., Ausubel F.M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993;4(2):403-410. DOI: 10.1046/j.1365-313X.1993. 04020403.x

38. Kumar A., Tiwari K.L., Datta D., Singh M. Marker assisted gene pyramiding for enhanced Tomato leaf curl virus disease resistance in tomato cultivars. Biol. Plantarum. 2014;58(4):792-797. DOI: 10.1007/ s10535-014-0449-y

39. Lee J.W., Bang K.H., Kim Y.C., Seo A.Y. Jo I.H., Lee J.H., Kim O.T., Hyun D.Y., Cha S.W., Cho J.H. CAPS markers using mitochondrial consensus primers for molecular identification of Panax species and Korean ginseng cultivars (Panax ginseng C.A. Meyer). Mol. Biol. Rep. 2012;39(1):729-736. DOI: 10.1007/s11033-011-0792-4

40. Li D., Lewis R.S., Jack A.M., Dewey R.E., Bowen S.W., Miller R.D. Development of CAPS and dCAPS markers for CYP82E4, CYP82E5v2 and CYP82E10 gene mutants reducing nicotine to nornicotine conversion in tobacco. Mol. Breeding. 2012;29(3):589-599. DOI: 10.1007/s11032-011-9575-9

41. Li D., Bao Y., Wu X., Jack A., Yang S. The use of CAPS and dCAPS markers in marker-assisted selection for tobacco breeding. Cleaved Amplified Polymorphic Sequences (CAPS) Markers in Plant Biology. Ed. Y. Shavrukov. NOVA Publisher: N.Y., 2014.

42. Lim S.H., Ha S.H. Marker development for the identification of rice seed color. Plant Biotechnol. Rep. 2013;7(3):391-398. DOI: 10.1007/ s11816-013-0276-1

43. Liu Z., Crampton M., Todd A., Kalavacharla V. Identification of expressed resistance gene-like sequences by data mining in 454-derived transcriptomic sequences of common bean (Phaseolus vulgaris L.). BMC Plant Biol. 2012;12:42. DOI: 10.1186/1471-2229-12-42

44. Liu S., Gao P., Wang X., Davis A.R., Baloch A.M., Luan F. Mapping of quantitative trait loci for lycopene content and fruit traits in Citrullus lanatus. Euphytica. 2014. DOI: 10.1007/s10681-014-1308-9

45. Lopez-Pardo R., Barandalla L., Ritter E., de Galarreta J.I.R. Validation of molecular markers for pathogen resistance in potato. Plant Breeding. 2013;132(3):246-251. DOI: 10.1111/pbr.12062

46. Lu K.T., Lee H.C., Liu F.S., Lo C.F., Lin J.H. Identification of Ginseng Radix in Chinese medicine preparations by nested PCR-DNA sequencing method and nested PCR-restriction fragment length polymorphism. J. Food Drug Analysis. 2010;18(1):58-63.

47. Lu Y., Zhao G., Li Y., Fan J., Ding G., Zhao J., Ni X., Wang W. Identification of two novel waxy alleles and development of their molecular markers in sorghum. Genome. 2013;56(5):283-288. DOI: 10.1139/ gen-2013-0047

48. Mammadov J., Aggarwal R., Buyyarapu R., Kumpatla S. SNP markers and their impact on plant breeding. Intern. J. Plant Genom. 2012;2012:728398. DOI: 10.1155/2012/728398

49. Miladinović D., Imerovski I., Dimitrijević A., Jocić S. CAPS markers in breeding of oil crops. Cleaved Amplified Polymorphic Sequences (CAPS) Markers in Plant Biology. Ed. Y. Shavrukov. NOVA Publisher: N.Y., 2014.

50. Miura Y. Development of CAPS markers and their use in breeding of ryegrasses and related species. Cleaved Amplified Polymorphic Sequences (CAPS) Markers in Plant Biology. Ed. Y. Shavrukov. NOVA Publisher: N.Y., 2014.

51. Mohan M., Nair S., Bhagwat A., Krishna T.G., Yano M., Bhatia C.R., Sasaki T. Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol. Breeding. 1997;3(2):87-103. DOI: 10.1023/A:1009651919792

52. Nakatsuka T., Saito M., Sato-Ushiku Y., Yamada E., Nakasato T., Hoshi N., Fujiwara K., Hikage T., Nishihara M. Development of DNA markers that discriminate between whiteand blue-flowers in Japanese gentian plants. Euphytica. 2012;184(3):335-344. DOI: 10.1007/s10681-011-0534-7

53. Neelam K., Brown-Guedira G., Huang L. Development and validation of a breeder-friendly KASPar marker for wheat leaf rust resistance locus Lr21. Mol. Breeding. 2013;31(1):233-237. DOI: 10.1007/ s11032-012-9773-0

54. Neff M.M., Neff J. D., Chory J., Pepper A.E. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J. 1998;14(3):387-392. DOI: 10.1046/j.1365-313X.1998.00124.x

55. Okoń S., Kowalczyk K., Miazga D. Identification of Ppd-B1 alleles in common wheat cultivars by CAPS marker. Генетика. 2012;48(5): 628-633. DOI: 10.1134/S102279541205016X

56. Panthee D.R., Brown A.F., Yousef G.G., Ibrahem R., Anderson C. Novel molecular marker associated with Tm2a gene conferring resistance to tomato mosaic virus in tomato. Plant Breeding. 2013;132(4):413416. DOI: 10.1111/pbr.12076

57. Park J., Bang H., Cho D.Y., Yoon M.K., Patil B.S., Kim S. Construction of high-resolution linkage map of the Ms locus, a restorer-of-fertility gene in onion (Allium cepa L.). Euphytica. 2013;192(2):267-278. DOI: 10.1007/s10681-012-0851-5

58. Pasev G., Kostova D., Sofkova S. Identification of genes for resistance to Bean common mosaic virus and Bean common mosaic necrosis virus in snap bean (Phaseolus vulgaris L.) breeding lines using conventional and molecular methods. J. Phytopathol. 2014;162(1):1925. DOI: 10.1111/jph.12149

59. Pavan S., Schiavulli A., Lotti C., Ricciardi L. CAPS technology as a tool for the development of genic and functional markers: Study in peas. Cleaved Amplified Polymorphic Sequences (CAPS) Markers in Plant Biology. Ed. Y. Shavrukov. NOVA Publisher: N.Y., 2014.

60. Perovic J., Silvar C., Koenig J., Stein N., Perovic D., Ordon F. A versatile fluorescence-based multiplexing assay for CAPS genotyping electrophoresis systems. Mol. Breeding. 2013;32(1):61-69. DOI: 10.1007/s11032-013-9852-x

61. Poczai P., Varga I., Laos M., Cseh A., Bell N., Valkonen J.P.T., Hyvönen J. Advances in plant gene-targeted and functional markers: A review. Plant Methods. 2013;9(1):6. DOI: 10.1186/1746-4811-9-6

62. Raats D., Yaniv E., Distelfeld A., Ben-David R., Shanir J., Bocharova V., Schulman A., Fahima T. Application of CAPS markers for genomic studies in wild emmer wheat. Cleaved Amplified Polymorphic Sequences (CAPS) Markers in Plant Biology. Ed. Y. Shavrukov. NOVA Publisher: N.Y., 2014.

63. Řepková J., Dreiseitl A., Lízal P. New CAPS marker for selection of barley powdery mildew resistance gene in the Mla locus. Cereal Research Communications. 2009;37(1):93-99. DOI: 10.1556/ CRC.37.2009.1.11

64. Sabatini E., Palma D., Ciriaci T., Acciarri N. Development and applications of CAPS markers in tomato breeding: Successful story about OVATE gene. Cleaved Amplified Polymorphic Sequences (CAPS) Markers in Plant Biology. Ed. Y. Shavrukov. NOVA Publisher: N.Y., 2014.

65. Salgotra R.K., Gupta B.B., Stewart J.C.N. From genomics to functional markers in the era of next-generation sequencing. Biotechnology Letters. 2014;36(3):417-426. DOI 10.1007/s10529-013-1377-1

66. Santo T., Rashkova M., Alabaça C., Leitão J. The ENU-induced powdery mildew resistant mutant pea (Pisum sativum L.) lines S(er1mut1) and F(er1mut2) harbour early stop codons in the PsMLO1 gene. Mol. Breeding. 2013;32(3):723-727. DOI: 10.1007/s11032-013-9889-x

67. Scarabel L., Panozzo S., Savoia W., Sattin M. Target-site ACCase-resistant johnsongrass (Sorghum halepense) selected in summer dicot crops. Weed Technology. 2014;28(2):307-315. DOI: 10.1614/WTD-13-00137.1

68. Semagn K., Bjørnstad A, Ndjiondjop M.N. An overview of molecular marker methods for plants. Afr. J. Biotechnol. 2006;5(25):25402568. DOI: 10.5897/AJB2006.000-5110

69. Shavrukov Y. Why are the development and application of CAPS markers so different in bread wheat compared to barley? Cleaved Amplified Polymorphic Sequences (CAPS) Markers in Plant Biology. Ed. Y. Shavrukov. NOVA Publisher: N.Y., 2014.

70. Shavrukov Y., Gupta N.K., Miyazaki J., Baho M.N., Chalmers K.J., Tester M., Langridge P., Collins N.C. HvNax3 – a locus controlling shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp. spontaneum). Functional and Integrative Genomics. 2010;10(2):277-291. DOI: 10.1007/s10142-009-0153-8

71. Smyda P., Jakuczun H., Debski K. Śliwka J., Thieme R., Nachtigall M., Wasilewicz-Flis I., Zimnoch-Guzowska E. Development of somatic hybrids Solanum × michoacanum Bitter. (Rydb.) (+) S. tuberosum L. and autofused 4x S. × michoacanum plants as potential sources of late blight resistance for potato breeding // Plant Cell Rep. 2013;32(8):1231-1241. DOI: 10.1007/s00299-013-1422-5.

72. Song X., Deng Z., Gong L., Hu J., Ma Q. Cloning and characterization of resistance gene candidate sequences and molecular marker development in gerbera (Gerbera hybrida). Sci. Hortic. 2012;145:68-75. DOI: 10.1016/j.scienta.2012.07.027

73. Tan Y.Y., Fu H.W., Zhao H.J., Lu S., Fu J.J., Li Y.Fa., Cui H.R., Shu Q.Y. Functional molecular markers and high-resolution melting curve analysis of low phytic acid mutations for marker-assisted selection in rice. Mol. Breeding. 2013;31(3):517-528. DOI: 10.1007/s11032012-9809-5

74. Ui H., Sameri M., Pourkheirandish M., Chang M.C., Shimada H., Stein N., Komatsuda T., Handa H. High-resolution genetic mapping and physical map construction for the fertility restorer Rfm1 locus in barley. Theor. Appl. Genet. 2015;128(2):283-290. DOI: 10.1007/s00122014-2428-2

75. Wang S., Wong D., Forrest K., Allen A., Chao S., Huang B.E., Maccaferri M., Salvi S., Milner S.G., Cattivelli L., Mastrangelo A.M., Whan A., Stephen S., Barker G., Wieseke R., Plieske J., Lillemo M., Mather D., Appels R., Dolferus R., Brown-Guedira G., Korol A., Akhunova A.R., Feuillet C., Salse J., Morgante M., Pozniak C., Luo M.C., Dvorak J., Morel M., Dubcovsky J., Ganal M., Tuberosa R., Lawley C., Mikoulitch I., Cavanagh C., Edwards K.J., Hayden M., Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol. J. 2014;12(6):787-796. DOI: 10.1111/pbi.12183

76. Wu J., Cao X., Guo L., Qi T., Wang H., Tang H., Zhang J., Xing C. Development of a candidate gene marker for Rf1 based on a PPR gene in cytoplasmic male sterile CMS-D2 Upland cotton. Mol. Breeding. 2014;34(1):231-240. DOI: 10.1007/s11032-014-0032-4

77. Yang R., Sun C., Bai J., Luo Z., Shi B., Zhang J., Yan W., Piao Z. A putative gene sbe3-rs for resistant starch mutated from SBE3 for starch branching enzyme in rice (Oryza sativa L.). PLoS ONE. 2012;7(8): e43026. DOI: 10.1371/journal.pone.0043026

78. Yatabe-Kakugawa Y., Ootsuki R. Development and analysis of CAPS markers in ferns. Cleaved Amplified Polymorphic Sequences (CAPS) Markers in Plant Biology. Ed. Y. Shavrukov. NOVA Publisher: N.Y., 2014.


Дополнительные файлы

Просмотров: 697

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)