DNA marker identification of downy mildew resistance locus Rpv10 in grapevine genotypes
https://doi.org/10.18699/VJGB-23-18
Abstract
One of the most common and harmful diseases of grapevine is downy mildew, caused by Plasmopara viticola. Cultivars of Vitis vinifera, the basis of high-quality viticulture, are mainly not resistant to downy mildew. Varieties with natural resistance to downy mildew belong to the vine species of North America and Asia (V. aestivalis, V. berlandieri, V. cinerea, V. labrusca, V. amurensis, etc.), as well as Muscadinia rotundifolia. The breeding of resistant cultivars is based on interspecific crossing. Currently, molecular genetic methods are increasingly used in pre-selection work and directly in breeding. One of the major loci of downy mildew resistance, Rpv10, was first identified in the variety Solaris and was originally inherited from wild V. amurensis. DNA markers that allow detecting Rpv10 in grapevine genotypes are known. We used PCR analysis to search for donors of resistance locus among 30 grape cultivars that, according to their pedigrees, could carry Rpv10. The work was performed using an automatic genetic analyzer, which allows obtaining high-precision data. Rpv10 locus allele, which determines resistance to the downy mildew pathogen, has been detected in 10 genotypes. Fingerprinting of grape cultivars with detected Rpv10 was performed at 6 reference SSR loci. DNA marker analysis revealed the presence of a resistance allele in the cultivar Korinka russkaya, which, according to publicly available data, is the offspring of the cultivar Zarya Severa and cannot carry Rpv10. Using the microsatellite loci polymorphism analysis and the data from VIVC database, it was found that Korinka russkaya is the progeny of the cultivar Severnyi, which is the donor of the resistance locus Rpv10. The pedigree of the grapevine cultivar Korinka russkaya was also clarified.
About the Authors
E. T. IlnitskayaRussian Federation
Krasnodar
M. V. Makarkina
Russian Federation
Krasnodar
S. V. Toкmakov
Russian Federation
Krasnodar
L. G. Naumova
Russian Federation
Novocherkassk
References
1. Abuzov M. Atlas of Northern Grapes. Smolensk: KFH Pitomnik Publ., 2009. (in Russian)
2. Alleweldt G., Possingham J.V. Progress in grapevine breeding. Theor. Appl. Genet. 1988;75:669-673. DOI:10.1007/BF00265585.
3. Bellin D., Peressotti E., Merdinoglu D., Wiedemann-Merdinoglu S., Adam-Blondon A.F., Cipriani G., Morgante M., Testolin R., Di Gaspero G. Resistance to Plasmopara viticola in grapevine ‘Bianca’ is controlled by a major dominant gene causing localised necrosis at the infection site. Theor. Appl. Genet. 2009;120:163-176. DOI:10.1007/s00122-009-1167-2.
4. Bhattarai G., Fennell A., Londo J.P., Coleman C., Kovacs L.G. A novel grape downy mildew resistance locus from Vitis rupestris. Am. J. Enol. Vitic. 2020;2:12-20. DOI:10.5344/ajev.2020.20030.
5. De Mattia F., Imazio S., Grassi F., Baneh H.D., Scienza A., Labra M. Study of genetic relationships between wild and domesticated grapevine distributed from middle east regions to European countries. Rend. Lincei. 2008;19:223-240. DOI:10.1007/s12210-008-0016-6.
6. Di Gaspero G., Copetti D., Coleman C., Castellarin S.D., Eibach R., Kozma P., Lacombe T., Gambetta G., Zvyagin A., Cindrić P., Kovács L., Morgante M., Testolin R. Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance. Theor. Appl. Genet. 2012;124(2):277-286. DOI:10.1007/s00122-011-1703-8.
7. Divilov K., Barba P., Cadle-Davidson L., Reisch B.I. Single and multiple phenotype QTL analyses of downy mildew resistance in interspecific grapevines. Theor. Appl. Genet. 2018;131(5):1133-1143. DOI:10.1007/s00122-018-3065-y.
8. Eibach R., Zyprian E., Welter L., Töpfer R. The use of molecular markers for pyramiding resistance genes in grapevine breeding. Vitis. 2007;46(3):120-124. DOI:10.5073/vitis.2007.46.120-124.
9. Fu P., Wu W., Lai G., Li R., Peng Y., Yang B., Wang B., Yin L., Qu J., Song Sh., Lu J. Identifying Plasmopara viticola resistance Loci in grapevine (Vitis amurensis) via genotyping-by-sequencing-based QTL mapping. Plant Physiol. Biochem. 2020;154:75-84. DOI:10.1016/j.plaphy.2020.05.016.
10. Ilnitskaya E., Tokmakov S., Makarkina M., Suprun I. Identification of downy mildew resistance genes Rpv10 and Rpv3 by DNA-marker analysis in a Russian grapevine germplasm collection (Conference Paper). Acta Hortic. 2019;1248:129-134. DOI:10.17660/ActaHortic. 2019.1248.19.
11. Lin H., Leng H., Guo Y., Kondo S., Zhao Y., Shi G., Guo X. QTLs and candidate genes for downy mildew resistance conferred by interspecific grape (V. vinifera L. × V. amurensis Rupr.) crossing. Sci. Hortic. 2019;244:200-207. DOI:10.1016/j.scienta.2018.09.045.
12. Ochssner I., Hausmann L., Töpfer R. Rpv14, a new genetic source for Plasmopara viticola resistance conferred by Vitis cinerea. Vitis. 2016;55:79-81. DOI:10.5073/vitis.2016.55.79-81.
13. Possamai T., Migliaro D., Gardiman M., Velasco R., De Nardi B. Rpv mediated defense responses in grapevine offspring resistant to Plasmopara viticola. Plants. 2020;9(6):781. DOI:10.3390/plants 9060781.
14. Riaz S., Tenscher A.C., Ramming D.W., Walker M.A. Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor. Appl. Genet. 2011;122:1059-1073. DOI:10.1007/s00122-010-1511-6.
15. Rogers S.O., Bendich A.J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 1985;19:69-76. DOI:10.1007/BF00020088.
16. Ruiz-García L., Gago P., Martínez-Mora C., Santiago J.L., FernádezLópez D.J., Martínez M.D.C., Boso S. Evaluation and pre-selection of new grapevine genotypes resistant to downy and powdery mildew, obtained by cross-breeding programs in Spain. Front. Plant Sci. 2021;12:674510. DOI:10.3389/fpls.2021.674510.
17. Sapkota S., Chen L.L., Yang S., Hyma K.E., Cadle-Davidson L., Hwang C.F. Construction of a high-density linkage map and QTL detection of downy mildew resistance in Vitis aestivalis-derived “Norton”. Theor. Appl. Genet. 2019;132:137-147. DOI:10.1007/s00122-018-3203-6.
18. Sargolzaei M., Maddalena G., Bitsadze N., Maghradze D., Bianco P.A., Failla O., Toffolatti S.L., De Lorenzis G. Rpv29, Rpv30 and Rpv31: three novel genomic loci associated with resistance to Plasmopa ra viticola in Vitis vinifera. Front. Plant Sci. 2020;11:1537. DOI:10.3389/fpls.2020.562432.
19. Schwander F., Eibach R., Fechter I., Hausmann L., Zyprian E., Töpfer R. Rpv10: a new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine. Theor. Appl. Genet. 2012;124:163-176. DOI:10.1007/s00122-011-1695-4.
20. This P., Jung A., Boccacci P., Borrego J., Botta R., Costantini L., Crespan M., Dangl G.S., Eisenheld C., Ferreira-Monteiro F., Grando S., Ibáñez J., Lacombe T., Laucou V., Magalhães R., Meredith C.P., Milani N., Peterlunger E., Regner F., Zulini L., Maul E. Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor. Appl. Genet. 2004;109:1448-1458. DOI:10.1007/s00122-004-1760-3.
21. This P. Microsatellite markers analysis. In: Minutes of the First Grape Gen06 Work-shop March 22nd and 23rd, INRA, Versailles (France). 2007;3-42.
22. Venuti S., Copetti D., Foria S., Falginella L., Hoffmann S., Bellin D., Cindrić P., Kozma P., Scalabrin S., Morgante M., Testolin R., Di Gaspero G. Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties. PLoS One. 2013;8:e61228. DOI:10.1371/journal.pone.0061228.
23. Wan Y., Schwaninger H., He P., Wang Y. Comparison of resistance to powdery mildew and downy mildew in Chinese wild grapes. Vitis. 2007;46:132-136. DOI:10.5073/vitis.2007.46.132-136.
24. Zini E., Dolzani C., Stefanini M., Gratl V., Bettinelli P., Nicolini D., Betta G., Dorigatti C., Velasco R., Letschka T., Vezzulli S. R-loci arrangement versus downy and powdery mildew resistance le vel: a Vitis hybrid survey. Int. J. Mol. Sci. 2019;20(14):3526. DOI:10.3390/ijms20143526.