Alterations in the social-conditioned place preference and density of dopaminergic neurons in the ventral tegmental area in Clsnt2-KO mice
https://doi.org/10.18699/VJGB-23-14
Abstract
The incidence of autistic spectrum disorders (ASD) constantly increases in the world. Studying the mechanisms underlying ASD as well as searching for new therapeutic targets are crucial tasks. Many researchers agree that autism is a neurodevelopmental disorder. Clstn2-KO mouse strain with a knockout of calsyntenin 2 gene (Clstn2) is model for investigating ASD. This study aims to evaluate the social-conditioned place preference as well as density of dopaminergic (DA) neurons in the ventral tegmental area (VTA), which belongs to the brain reward system, in the males of the Clstn2-KO strain using wild type C57BL/6J males as controls. Social-conditioned place preference test evaluates a reward-dependent component of social behavior. The results of this test revealed differences between the Clstn2-KO and the control males, as the former did not value socializing with the familiar partner, spending equal time in the isolationand socializing-associated compartments. The Clstn2-KO group entered both compartments more frequently, but spent less time in the socializingassociated compartment compared to the controls. By contrast, the control males of the C57BL/6J strain spent more time in socializing-associated compartment and less time in the compartment that was associated with loneness. At the same time, an increased number of DA and possibly GABA neurons labeled with antibodies against the type 2 dopamine receptor as well as against tyrosine hydroxylase were detected in the VTA of the Clstn2-KO mice. Thus, a change in social-conditioned place preference in Clstn2-KO mice as well as a higher number of neurons expressing type 2 dopamine receptors and tyrosine hydroxylase in the VTA, the key structure of the mesolimbic dopaminergic pathway, were observed.
About the Authors
I. N. RozhkovaRussian Federation
Novosibirsk
S. V. Okotrub
Russian Federation
Novosibirsk
E. Yu. Brusentsev
Russian Federation
Novosibirsk
K. E. Uldanova
Russian Federation
Novosibirsk
E. A. Chuyko
Russian Federation
Novosibirsk
V. A. Naprimerov
Russian Federation
Novosibirsk
T. V. Lipina
Canada
Toronto
T. G. Amstislavskaya
Russian Federation
Novosibirsk
S. Ya. Amstislavsky
Russian Federation
Novosibirsk
References
1. AlAyadhi L.Y., Hashmi J.A., Iqbal M., Albalawi A.M., Samman M.I., Elamin N.E., Bashir S., Basit S. High-resolution SNP genotyping platform identified recurrent and novel CNVs in autism multiplex families. Neuroscience. 2016;339:561-570. DOI:10.1016/j.neuroscience.2016.10.030.
2. Autism spectrum disorder. In: Diagnostic and Statistical Manual of Mental Disorders, 5th Edn. Washington, DC: American Psychiatric Association, 2013;5059.
3. Bariselli S., Hornberg H., Prevost-Solie C., Musardo S., HatstattBurkle L., Scheiffele P., Bellone C. Role of VTA dopamine neurons and neuroligin 3 in sociability traits related to nonfamiliar conspecific interaction. Nat. Commun. 2018;9(1):3173. DOI:10.1038/s41467018053823.
4. Bariselli S., Tzanoulinou S., Glangetas C., Prevost-Solie C., Pucci L., Viguie J., Bezzi P., O’Connor E.C., Georges F., Luscher C., Bellone C. SHANK3 controls maturation of social reward circuits in the VTA. Nat. Neurosci. 2016;19(7):926-934. DOI:10.1038/nn.4319.
5. Bello E.P., Mateo Y., Gelman D.M., Noain D., Shin J.H., Low M.J., Alvarez V.A., Lovinger D.M., Rubinstein M. Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors. Nat. Neurosci. 2011;14(8):1033-1038. DOI:10.1038/nn.2862.
6. Berrios J., Stamatakis A.M., Kantak P.A., McElligott Z.A., Judson M.C., Aita M., Rougie M., Stuber G.D., Philpot B.D. Loss of UBE3A from TH-expressing neurons suppresses GABA co-release and enhances VTA-NAc optical self-stimulation. Nat. Commun. 2016;7:10702. DOI:10.1038/ncomms10702.
7. Bourgeron T. A synaptic trek to autism. Curr. Opin. Neurobiol. 2009; 19(2):231-234. DOI:10.1016/j.conb.2009.06.003.
8. Buxbaum J.D. Multiple rare variants in the etiology of autism spectrum disorders. Dialogues Clin. Neurosci. 2009;11(1):35-43. DOI:10.31887/DCNS.2009.11.1/jdbuxbaum.
9. Canitano R. Epilepsy in autism spectrum disorders. Eur. Child. Adolesc. Psychiatry. 2007;16(1):61-66. DOI:10.1007/s00787-006-0563-2.
10. Chao O.Y., Pathak S.S., Zhang H., Dunaway N., Li J.S., Mattern C., Nikolaus S., Huston J.P., Yang Y.M. Altered dopaminergic pathways and therapeutic effects of intranasal dopamine in two distinct mouse models of autism. Mol. Brain. 2020;13(1):111. DOI:10.1186/s13041020006497.
11. Chen P., Hong W. Neural circuit mechanisms of social behavior. Neuron. 2018;98(1):16-30. DOI:10.1016/j.neuron.2018.02.026.
12. Fan X., Xu M., Hess E.J. D2 dopamine receptor subtype-mediated hyperactivity and amphetamine responses in a model of ADHD. Neurobiol. Dis. 2010;37(1):228-236. DOI:10.1016/j.nbd.2009.10.009.
13. Girault J.B., Piven J. The neurodevelopment of autism from infancy through toddlerhood. Neuroimaging Clin. N. Am. 2020;30(1):97114. DOI:10.1016/j.nic.2019.09.009.
14. Gunaydin L.A., Deisseroth K. Dopaminergic dynamics contributing to social behavior. Cold Spring Harb. Symp. Quant. Biol. 2014;79: 221-227. DOI:10.1101/sqb.2014.79.024711.
15. Hart A.B., Engelhardt B.E., Wardle M.C., Sokoloff G., Stephens M., de Wit H., Palmer A.A. Genome-wide association study of damphetamine response in healthy volunteers identifies putative associations, including cadherin 13 (CDH13). PLoS One. 2012;7(8): e42646. DOI:10.1371/journal.pone.0042646.
16. Hintsch G., Zurlinden A., Meskenaite V., Steuble M., Fink-Widmer K., Kinter J., Sonderegger P. The calsyntenins – a family of postsynaptic membrane proteins with distinct neuronal expression patterns. Mol. Cell. Neurosci. 2002;21(3):393-409. DOI:10.1006/mcne.2002.1181.
17. Huguet G., Benabou M., Bourgeron T. The genetics of autism spectrum disorders. In: Sassone-Corsi P., Christen Y. (Eds.) A Time for Metabolism and Hormones. Research and Perspectives in Endocrine Interactions. Cham: Springer, 2016;101-130. DOI:10.1007/978-3319270692_11.
18. Jacobsen L.K., Picciotto M.R., Heath C.J., Mencl W.E., Gelernter J. Allelic variation of calsyntenin 2 (CLSTN2) modulates the impact of developmental tobacco smoke exposure on mnemonic processing in adolescents. Biol. Psychiatry. 2009;65(8):671-679. DOI:10.1016/j.biopsych.2008.10.024.
19. Karayannis T., Au E., Patel J.C., Kruglikov I., Markx S., Delorme R., Heron D., Salomon D., Glessner J., Restituito S., Gordon A., Rodriguez-Murillo L., Roy N.C., Gogos J.A., Rudy B., Rice M.E., Karayiorgou M., Hakonarson H., Keren B., Huguet G., Bourgeron T., Hoeffer C., Tsien R.W., Peles E., Fishell G. Cntnap4 differentially contributes to GABAergic and dopaminergic synaptic transmission. Nature. 2014;511(7508):236-240. DOI:10.1038/nature13248.
20. Klenova A.V., Volodin I.A., Volodina E.V., Ranneva S.V., Amstislavskaja T.G., Lipina T.V. Vocal and physical phenotypes of calsyntenin2 knockout mouse pups model earlylife symptoms of the autism spectrum disorder. Behav. Brain Res. 2021;412:113430. DOI:10.1016/j.bbr.2021.113430.
21. Kohls G., Chevallier C., Troiani V., Schultz R.T. Social ‘wanting’ dysfunction in autism: neurobiological underpinnings and treatment implications. J. Neurodev. Disord. 2012;4(1):10. DOI:10.1186/18661955410.
22. Kohls G., Yerys B.E., Schultz R.T. Striatal development in autism: repetitive behaviors and the reward circuitry. Biol. Psychiatry. 2014; 76(5):358-359. DOI:10.1016/j.biopsych.2014.07.010.
23. Lammel S., Hetzel A., Hackel O., Jones I., Liss B., Roeper J. Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron. 2008;57(5):760-773. DOI:10.1016/j.neuron.2008.01.022.
24. Lan A., Stein D., Portillo M., Toiber D., Kofman O. Impaired innate and conditioned social behavior in adult C57Bl6/J mice prenatally exposed to chlorpyrifos. Behav. Brain Funct. 2019;15(1):2. DOI:10.1186/s1299301901533.
25. Laukka E.J., Lovden M., Herlitz A., Karlsson S., Ferencz B., Pantzar A., Keller L., Graff C., Fratiglioni L., Backman L. Genetic effects on old-age cognitive functioning: a population-based study. Psychol. Aging. 2013;28(1):262-274. DOI:10.1037/a0030829.
26. Lipina T.V., Fletcher P.J., Lee F.H., Wong A.H.C., Roder J.C. Disruptedinschizophrenia1 Gln31Leu polymorphism results in social anhedonia associated with monoaminergic imbalance and reduction of CREB and βarrestin1,2 in the nucleus accumbens in a mouse model of depression. Neuropsychopharmacology. 2013;38(3):423436. DOI:10.1038/npp.2012.197.
27. Lipina T.V., Prasad T., Yokomaku D., Luo L., Connor S.A., Kawabe H., Wang Y.T., Brose N., Roder J.C., Craig A.M. Cognitive deficits in calsyntenin-2 deficient mice associated with reduced GABAergic transmission. Neuropsychopharmacolocy. 2016;41(3):802-810. DOI:10.1038/npp.2015.206.
28. Margolis E.B., Toy B., Himmels P., Morales M., Fields H.L. Identification of rat ventral tegmental area GABAergic neurons. PLoS One. 2012;7(7):e42365. DOI:10.1371/journal.pone.0042365.
29. Mariggio M.A., Palumbi R., Vinella A., Laterza R., Petruzzelli M.G., Peschechera A., Gabellone A., Gentile O., Vincenti A., Margari L. DRD1 and DRD2 receptor polymorphisms: genetic neuromodulation of the dopaminergic system as a risk factor for ASD, ADHD and ASD/ADHD overlap. Front. Neurosci. 2021;15:705890. DOI:10.3389/fnins.2021.705890.
30. Marshall J.J., Mason J.O. Mouse vs man: organoid models of brain development & disease. Brain Res. 2019;1724:146427. DOI:10.1016/j.brainres.2019.146427.
31. Morales M., Margolis E.B. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat. Rev. Neurosci. 2017;18(2): 73-85. DOI:10.1038/nrn.2016.165.
32. Panksepp J.B., Lahvis G.P. Social reward among juvenile mice. Genes Brain Behav. 2007;6(7):661-671. DOI:10.1111/j.1601-183X.2006.00295.x.
33. Paxinos G., Franklin K.B.J. The Mouse Brain in Stereotaxic Coordinates. 2nd Edn. Academic Press, 2001.
34. Ranneva S.V., Maksimov V.F., Korostyshevskaja I.M., Lipina T.V. Lack of synaptic protein, calsyntenin-2, impairs morphology of synaptic complexes in mice. Synapse. 2020;74(2):e22132. DOI:10.1002/syn.22132.
35. Ranneva S.V., Pavlov K.S., Gromova A.V., Amstislavskaya T.G., Lipina T.V. Features of emotional and social behavioral phenotypes of calsyntenin2 knockout mice. Behav. Brain Res. 2017;332:343354. DOI:10.1016/j.bbr.2017.06.029.
36. Root D.H., Mejias-Aponte C.A., Zhang S., Wang H.L., Hoffman A.F., Lupica C.R., Morales M. Single rodent mesohabenular axons release glutamate and GABA. Nat. Neurosci. 2014;17:1543-1551. DOI:10.1038/nn.3823.
37. Sanchez-Catalan M.J., Kaufling J., George F., Veinante P., Barrot M. The antero-posterior heterogeneity of the ventral tegmental area. Neuroscience. 2014;282:198-216. DOI:10.1016/j.neuroscience.2014.09.025.
38. Saunders B.T., Richard J.M., Janak P.H. Contemporary approaches to neural circuit manipulation and mapping: focus on reward and addiction. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2015;370(1677): 20140210. DOI:10.1098/rstb.2014.0210.
39. Sawicka K., Hale C.R., Park C.Y., Fak J.J., Gresack J.E. FMRP has a cell-type-specific role in CA1 pyramidal neurons to regulate autismrelated transcripts and circadian memory. eLife. 2019;8: e46919. DOI:10.7554/eLife.46919.
40. Sesack S.R., Grace A.A. Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology. 2010;35(1):27-47. DOI:10.1038/npp.2009.93.
41. Solie C., Girard B., Righetti B., Tapparel M., Bellone C. VTA dopamine neuron activity encodes social interaction and promotes reinforcement learning through social prediction error. Nat. Neurosci. 2022;25:86-97. DOI:10.1038/s41593-021-00972-9.
42. Squillace M., Dodero L., Federici M., Migliarini S., Errico F., Napolitano F., Krashia P., Di Maio A., Galbusera A., Bifone A., Scattoni M.L., Pasqualetti M., Mercuri N.B., Usiello A., Gozzi A. Dysfunctional dopaminergic neurotransmission in asocial BTBR mice. Transl. Psychiatry. 2014;4(8):e427. DOI:10.1038/tp.2014.69.
43. Supekar K., Kochalka J., Schaer M., Wakeman H., Qin S., Padmanabhan A., Menon V. Deficits in mesolimbic reward pathway underlie social interaction impairments in children with autism. Brain. 2018;141(9):2795-2805. DOI:10.1093/brain/awy191.
44. Tassan Mazzocco M., Guarnieri F.C., Monzani E., Benfenati F., Valtorta F., Comai S. Dysfunction of the serotonergic system in the brain of synapsin triple knockout mice is associated with behavioral abnormalities resembling synapsin-related human pathologies. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2021;105:110135. DOI: 10.1016/j.pnpbp.2020.110135.
45. Yang G., Shcheglovitov A. Probing disrupted neurodevelopment in autism using human stem cell-derived neurons and organoids: an outlook into future diagnostics and drug development. Dev. Dyn. 2020;249(1):6-33. DOI:10.1002/dvdy.100.
46. Zhang Q., Wu H., Zou M., Li L., Li Q., Sun C., Xia W., Cao Y., Wu L. Folic acid improves abnormal behavior via mitigation of oxidative stress, inflammation, and ferroptosis in the BTBR T+ tf/J mouse model of autism. J. Nutr. Biochem. 2019;71:98-109. DOI:10.1016/j.jnutbio.2019.05.002.
47. Zhang S., Qi J., Li X., Wang H.L., Britt J.P., Hoffman A.F., Bonci A., Lupica C.R., Morales M. Dopaminergic and glutamatergic microdomains in a subset of rodent mesoaccumbens axons. Nat. Neurosci. 2015;18(3):386-392. DOI:10.1038/nn.3945.
48. Zoghbi H.Y. Postnatal neurodevelopmental disorders: meeting at the synapse? Science. 2003;302:826-830. DOI:10.1126/science.1089071.