Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Alterations in the social-conditioned place preference and density of dopaminergic neurons in the ventral tegmental area in Clsnt2-KO mice

https://doi.org/10.18699/VJGB-23-14

Abstract

The incidence of autistic spectrum disorders (ASD) constantly increases in the world. Studying the mechanisms underlying ASD as well as searching for new therapeutic targets are crucial tasks. Many researchers agree that autism is a neurodevelopmental disorder. Clstn2-KO mouse strain with a knockout of calsyntenin 2 gene (Clstn2) is model for investigating ASD. This study aims to evaluate the social-conditioned place preference as well as density of dopaminergic (DA) neurons in the ventral tegmental area (VTA), which belongs to the brain reward system, in the males of the Clstn2-KO strain using wild type C57BL/6J males as controls. Social-conditioned place preference test evaluates a reward-dependent component of social behavior. The results of this test revealed differences between the Clstn2-KO and the control males, as the former did not value socializing with the familiar partner, spending equal time in the isolationand socializing-associated compartments. The Clstn2-KO group entered both compartments more frequently, but spent less time in the socializingassociated compartment compared to the controls. By contrast, the control males of the C57BL/6J strain spent more time in socializing-associated compartment and less time in the compartment that was associated with loneness. At the same time, an increased number of DA and possibly GABA neurons labeled with antibodies against the type 2 dopamine receptor as well as against tyrosine hydroxylase were detected in the VTA of the Clstn2-KO mice. Thus, a change in social-conditioned place preference in Clstn2-KO mice as well as a higher number of neurons expressing type 2 dopamine receptors and tyrosine hydroxylase in the VTA, the key structure of the mesolimbic dopaminergic pathway, were observed.

About the Authors

I. N. Rozhkova
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



S. V. Okotrub
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



E. Yu. Brusentsev
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



K. E. Uldanova
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



E. A. Chuyko
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



V. A. Naprimerov
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Agricultural University
Russian Federation

Novosibirsk



T. V. Lipina
University of Toronto
Canada

Toronto



T. G. Amstislavskaya
Scientific Research Institute of Neurosciences and Medicine
Russian Federation

Novosibirsk



S. Ya. Amstislavsky
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



References

1. AlAyadhi L.Y., Hashmi J.A., Iqbal M., Albalawi A.M., Samman M.I., Elamin N.E., Bashir S., Basit S. High-resolution SNP genotyping platform identified recurrent and novel CNVs in autism multiplex families. Neuroscience. 2016;339:561-570. DOI:10.1016/j.neuroscience.2016.10.030.

2. Autism spectrum disorder. In: Diagnostic and Statistical Manual of Mental Disorders, 5th Edn. Washington, DC: American Psychiatric Association, 2013;50­59.

3. Bariselli S., Hornberg H., Prevost-Solie C., Musardo S., HatstattBurkle L., Scheiffele P., Bellone C. Role of VTA dopamine neurons and neuroligin 3 in sociability traits related to nonfamiliar conspecific interaction. Nat. Commun. 2018;9(1):3173. DOI:10.1038/s41467­018­05382­3.

4. Bariselli S., Tzanoulinou S., Glangetas C., Prevost-Solie C., Pucci L., Viguie J., Bezzi P., O’Connor E.C., Georges F., Luscher C., Bellone C. SHANK3 controls maturation of social reward circuits in the VTA. Nat. Neurosci. 2016;19(7):926-934. DOI:10.1038/nn.4319.

5. Bello E.P., Mateo Y., Gelman D.M., Noain D., Shin J.H., Low M.J., Alvarez V.A., Lovinger D.M., Rubinstein M. Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors. Nat. Neurosci. 2011;14(8):1033-1038. DOI:10.1038/nn.2862.

6. Berrios J., Stamatakis A.M., Kantak P.A., McElligott Z.A., Judson M.C., Aita M., Rougie M., Stuber G.D., Philpot B.D. Loss of UBE3A from TH-expressing neurons suppresses GABA co-release and enhances VTA-NAc optical self-stimulation. Nat. Commun. 2016;7:10702. DOI:10.1038/ncomms10702.

7. Bourgeron T. A synaptic trek to autism. Curr. Opin. Neurobiol. 2009; 19(2):231-234. DOI:10.1016/j.conb.2009.06.003.

8. Buxbaum J.D. Multiple rare variants in the etiology of autism spectrum disorders. Dialogues Clin. Neurosci. 2009;11(1):35-43. DOI:10.31887/DCNS.2009.11.1/jdbuxbaum.

9. Canitano R. Epilepsy in autism spectrum disorders. Eur. Child. Adolesc. Psychiatry. 2007;16(1):61-66. DOI:10.1007/s00787-006-0563-2.

10. Chao O.Y., Pathak S.S., Zhang H., Dunaway N., Li J.S., Mattern C., Nikolaus S., Huston J.P., Yang Y.M. Altered dopaminergic pathways and therapeutic effects of intranasal dopamine in two distinct mouse models of autism. Mol. Brain. 2020;13(1):111. DOI:10.1186/s13041­020­00649­7.

11. Chen P., Hong W. Neural circuit mechanisms of social behavior. Neuron. 2018;98(1):16-30. DOI:10.1016/j.neuron.2018.02.026.

12. Fan X., Xu M., Hess E.J. D2 dopamine receptor subtype-mediated hyperactivity and amphetamine responses in a model of ADHD. Neurobiol. Dis. 2010;37(1):228-236. DOI:10.1016/j.nbd.2009.10.009.

13. Girault J.B., Piven J. The neurodevelopment of autism from infancy through toddlerhood. Neuroimaging Clin. N. Am. 2020;30(1):97114. DOI:10.1016/j.nic.2019.09.009.

14. Gunaydin L.A., Deisseroth K. Dopaminergic dynamics contributing to social behavior. Cold Spring Harb. Symp. Quant. Biol. 2014;79: 221-227. DOI:10.1101/sqb.2014.79.024711.

15. Hart A.B., Engelhardt B.E., Wardle M.C., Sokoloff G., Stephens M., de Wit H., Palmer A.A. Genome-wide association study of d­amphetamine response in healthy volunteers identifies putative associations, including cadherin 13 (CDH13). PLoS One. 2012;7(8): e42646. DOI:10.1371/journal.pone.0042646.

16. Hintsch G., Zurlinden A., Meskenaite V., Steuble M., Fink-Widmer K., Kinter J., Sonderegger P. The calsyntenins – a family of postsynaptic membrane proteins with distinct neuronal expression patterns. Mol. Cell. Neurosci. 2002;21(3):393-409. DOI:10.1006/mcne.2002.1181.

17. Huguet G., Benabou M., Bourgeron T. The genetics of autism spectrum disorders. In: Sassone-Corsi P., Christen Y. (Eds.) A Time for Metabolism and Hormones. Research and Perspectives in Endocrine Interactions. Cham: Springer, 2016;101-130. DOI:10.1007/978-3319­27069­2_11.

18. Jacobsen L.K., Picciotto M.R., Heath C.J., Mencl W.E., Gelernter J. Allelic variation of calsyntenin 2 (CLSTN2) modulates the impact of developmental tobacco smoke exposure on mnemonic processing in adolescents. Biol. Psychiatry. 2009;65(8):671-679. DOI:10.1016/j.biopsych.2008.10.024.

19. Karayannis T., Au E., Patel J.C., Kruglikov I., Markx S., Delorme R., Heron D., Salomon D., Glessner J., Restituito S., Gordon A., Rodriguez-Murillo L., Roy N.C., Gogos J.A., Rudy B., Rice M.E., Karayiorgou M., Hakonarson H., Keren B., Huguet G., Bourgeron T., Hoeffer C., Tsien R.W., Peles E., Fishell G. Cntnap4 differentially contributes to GABAergic and dopaminergic synaptic transmission. Nature. 2014;511(7508):236-240. DOI:10.1038/nature13248.

20. Klenova A.V., Volodin I.A., Volodina E.V., Ranneva S.V., Amstislavskaja T.G., Lipina T.V. Vocal and physical phenotypes of calsyntenin2 knockout mouse pups model early­life symptoms of the autism spectrum disorder. Behav. Brain Res. 2021;412:113430. DOI:10.1016/j.bbr.2021.113430.

21. Kohls G., Chevallier C., Troiani V., Schultz R.T. Social ‘wanting’ dysfunction in autism: neurobiological underpinnings and treatment implications. J. Neurodev. Disord. 2012;4(1):10. DOI:10.1186/18661955­4­10.

22. Kohls G., Yerys B.E., Schultz R.T. Striatal development in autism: repetitive behaviors and the reward circuitry. Biol. Psychiatry. 2014; 76(5):358-359. DOI:10.1016/j.biopsych.2014.07.010.

23. Lammel S., Hetzel A., Hackel O., Jones I., Liss B., Roeper J. Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron. 2008;57(5):760-773. DOI:10.1016/j.neuron.2008.01.022.

24. Lan A., Stein D., Portillo M., Toiber D., Kofman O. Impaired innate and conditioned social behavior in adult C57Bl6/J mice prenatally exposed to chlorpyrifos. Behav. Brain Funct. 2019;15(1):2. DOI:10.1186/s12993­019­0153­3.

25. Laukka E.J., Lovden M., Herlitz A., Karlsson S., Ferencz B., Pantzar A., Keller L., Graff C., Fratiglioni L., Backman L. Genetic effects on old-age cognitive functioning: a population-based study. Psychol. Aging. 2013;28(1):262-274. DOI:10.1037/a0030829.

26. Lipina T.V., Fletcher P.J., Lee F.H., Wong A.H.C., Roder J.C. Disrupted­in­schizophrenia­1 Gln31Leu polymorphism results in social anhedonia associated with monoaminergic imbalance and reduction of CREB and β­arrestin­1,2 in the nucleus accumbens in a mouse model of depression. Neuropsychopharmacology. 2013;38(3):423436. DOI:10.1038/npp.2012.197.

27. Lipina T.V., Prasad T., Yokomaku D., Luo L., Connor S.A., Kawabe H., Wang Y.T., Brose N., Roder J.C., Craig A.M. Cognitive deficits in calsyntenin-2 deficient mice associated with reduced GABAergic transmission. Neuropsychopharmacolocy. 2016;41(3):802-810. DOI:10.1038/npp.2015.206.

28. Margolis E.B., Toy B., Himmels P., Morales M., Fields H.L. Identification of rat ventral tegmental area GABAergic neurons. PLoS One. 2012;7(7):e42365. DOI:10.1371/journal.pone.0042365.

29. Mariggio M.A., Palumbi R., Vinella A., Laterza R., Petruzzelli M.G., Peschechera A., Gabellone A., Gentile O., Vincenti A., Margari L. DRD1 and DRD2 receptor polymorphisms: genetic neuromodulation of the dopaminergic system as a risk factor for ASD, ADHD and ASD/ADHD overlap. Front. Neurosci. 2021;15:705890. DOI:10.3389/fnins.2021.705890.

30. Marshall J.J., Mason J.O. Mouse vs man: organoid models of brain development & disease. Brain Res. 2019;1724:146427. DOI:10.1016/j.brainres.2019.146427.

31. Morales M., Margolis E.B. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat. Rev. Neurosci. 2017;18(2): 73-85. DOI:10.1038/nrn.2016.165.

32. Panksepp J.B., Lahvis G.P. Social reward among juvenile mice. Genes Brain Behav. 2007;6(7):661-671. DOI:10.1111/j.1601-183X.2006.00295.x.

33. Paxinos G., Franklin K.B.J. The Mouse Brain in Stereotaxic Coordinates. 2nd Edn. Academic Press, 2001.

34. Ranneva S.V., Maksimov V.F., Korostyshevskaja I.M., Lipina T.V. Lack of synaptic protein, calsyntenin-2, impairs morphology of synaptic complexes in mice. Synapse. 2020;74(2):e22132. DOI:10.1002/syn.22132.

35. Ranneva S.V., Pavlov K.S., Gromova A.V., Amstislavskaya T.G., Lipina T.V. Features of emotional and social behavioral phenotypes of calsyntenin2 knockout mice. Behav. Brain Res. 2017;332:343­354. DOI:10.1016/j.bbr.2017.06.029.

36. Root D.H., Mejias-Aponte C.A., Zhang S., Wang H.L., Hoffman A.F., Lupica C.R., Morales M. Single rodent mesohabenular axons release glutamate and GABA. Nat. Neurosci. 2014;17:1543-1551. DOI:10.1038/nn.3823.

37. Sanchez-Catalan M.J., Kaufling J., George F., Veinante P., Barrot M. The antero-posterior heterogeneity of the ventral tegmental area. Neuroscience. 2014;282:198-216. DOI:10.1016/j.neuroscience.2014.09.025.

38. Saunders B.T., Richard J.M., Janak P.H. Contemporary approaches to neural circuit manipulation and mapping: focus on reward and addiction. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2015;370(1677): 20140210. DOI:10.1098/rstb.2014.0210.

39. Sawicka K., Hale C.R., Park C.Y., Fak J.J., Gresack J.E. FMRP has a cell-type-specific role in CA1 pyramidal neurons to regulate autism­related transcripts and circadian memory. eLife. 2019;8: e46919. DOI:10.7554/eLife.46919.

40. Sesack S.R., Grace A.A. Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology. 2010;35(1):27-47. DOI:10.1038/npp.2009.93.

41. Solie C., Girard B., Righetti B., Tapparel M., Bellone C. VTA dopamine neuron activity encodes social interaction and promotes reinforcement learning through social prediction error. Nat. Neurosci. 2022;25:86-97. DOI:10.1038/s41593-021-00972-9.

42. Squillace M., Dodero L., Federici M., Migliarini S., Errico F., Napolitano F., Krashia P., Di Maio A., Galbusera A., Bifone A., Scattoni M.L., Pasqualetti M., Mercuri N.B., Usiello A., Gozzi A. Dysfunctional dopaminergic neurotransmission in asocial BTBR mice. Transl. Psychiatry. 2014;4(8):e427. DOI:10.1038/tp.2014.69.

43. Supekar K., Kochalka J., Schaer M., Wakeman H., Qin S., Padmanabhan A., Menon V. Deficits in mesolimbic reward pathway underlie social interaction impairments in children with autism. Brain. 2018;141(9):2795-2805. DOI:10.1093/brain/awy191.

44. Tassan Mazzocco M., Guarnieri F.C., Monzani E., Benfenati F., Valtorta F., Comai S. Dysfunction of the serotonergic system in the brain of synapsin triple knockout mice is associated with behavioral abnormalities resembling synapsin-related human pathologies. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2021;105:110135. DOI: 10.1016/j.pnpbp.2020.110135.

45. Yang G., Shcheglovitov A. Probing disrupted neurodevelopment in autism using human stem cell-derived neurons and organoids: an outlook into future diagnostics and drug development. Dev. Dyn. 2020;249(1):6-33. DOI:10.1002/dvdy.100.

46. Zhang Q., Wu H., Zou M., Li L., Li Q., Sun C., Xia W., Cao Y., Wu L. Folic acid improves abnormal behavior via mitigation of oxidative stress, inflammation, and ferroptosis in the BTBR T+ tf/J mouse model of autism. J. Nutr. Biochem. 2019;71:98-109. DOI:10.1016/j.jnutbio.2019.05.002.

47. Zhang S., Qi J., Li X., Wang H.L., Britt J.P., Hoffman A.F., Bonci A., Lupica C.R., Morales M. Dopaminergic and glutamatergic microdomains in a subset of rodent mesoaccumbens axons. Nat. Neurosci. 2015;18(3):386-392. DOI:10.1038/nn.3945.

48. Zoghbi H.Y. Postnatal neurodevelopmental disorders: meeting at the synapse? Science. 2003;302:826-830. DOI:10.1126/science.1089071.


Review

Views: 1207


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)