Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Генетический контроль N-гликозилирования белков плазмы крови человека

https://doi.org/10.18699/VJGB-23-29

Аннотация

Гликозилирование является важной модификацией белков, которая влияет как на их физико-химические свойства, так и на выполняемые ими биологические функции. Масштабные популяционные исследования показали, что уровни различных N-гликанов белков плазмы крови ассоциированы с риском развития ряда мультифакторных заболеваний человека. Найденные ассоциации стали основанием для рассмотрения N-гликанов в качестве потенциального источника биомаркеров и терапевтических мишеней. Биохимические пути N-гликозилирования хорошо изучены, однако понимание механизмов общей и тканеспецифической регуляции этих биохимических реакций in vivo весьма ограниченно. Это затрудняет как интерпретацию наблюдаемых ассоциаций уровней N-гликанов с заболеваниями человека, так и разработку биомаркеров и молекулярных мишеней на их основе. Прогресс в области технологий анализа N-гликозилирования белков позволил к началу 2010-х годов проводить исследования регуляции N-гликозилирования с помощью методов генетического анализа, в том числе полногеномного исследования генетических ассоциаций. Применение этих методов дает возможность находить новые, ранее неизвестные регуляторы N-гликозилирования и расширяет представление о роли N-гликанов в контроле мультифакторных заболеваний и комплексных признаков человека. В данном обзоре мы рассматриваем современное состояние исследований генетического контроля популяционной изменчивости уровней N-гликозилирования белков плазмы крови человека. Описаны современные физико-химические методы измерения N-гликомного профиля, приведены базы данных, содержащие гены, вовлеченные в биосинтез N-гликанов. Систематизированы результаты исследований вклада средовых и генетических факторов в популяционную изменчивость N-гликанов, а также результаты картирования геномных локусов N-гликанов методом полногеномного исследования ассоциаций. Представлены результаты последующих функциональных исследований in vitro и in silico, позволивших предложить новые гены-кандидаты, регулирующие N-гликозилирование белков. В заключение кратко показан текущий прогресс в области гликогеномики человека и описаны возможные пути дальнейших исследований N-гликома.

Об авторах

С. Ж. Шарапов
Институт перспективных исследований проблем искусственного интеллекта и интеллектуальных систем Московского государственного университета им. М.В. Ломоносова
Россия

Москва



А. Н. Тимощук
Институт перспективных исследований проблем искусственного интеллекта и интеллектуальных систем Московского государственного университета им. М.В. Ломоносова
Россия

Москва



Ю. С. Аульченко
Институт перспективных исследований проблем искусственного интеллекта и интеллектуальных систем Московского государственного университета им. М.В. Ломоносова; Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Москва, Новосибирск



Список литературы

1. Akmačić I.T., Ugrina I., Štambuk J., Gudelj I., Vučković F., Lauc G., Pučić-Baković M. High-throughput glycomics: optimization of sample preparation. Biochemistry (Mosc.). 2015;80(7):934-942. DOI 10.1134/S0006297915070123.

2. Allegri M., De Gregori M., Minella C.E., Klersy C., Wang W., Sim M., Gieger C., Manz J., Pemberton I.K., MacDougall J., Williams F.M., Van Zundert J., Buyse K., Lauc G., Gudelj I., Primorac D., Skelin A., Aulchenko Y.S., Karssen L.C., Kapural L., Rauck R., Fanelli G., PainOMICS Group “Omics” biomarkers associated with chronic low back pain: protocol of a retrospective longitudinal study. BMJ Open. 2016;6(10):e012070. DOI 10.1136/bmjopen-2016-012070.

3. Anthony R.M., Wermeling F., Ravetch J.V. Novel roles for the IgG Fc glycan. Ann. N. Y. Acad. Sci. 2012;1253(1):170-180. DOI 10.1111/j.1749-6632.2011.06305.x.

4. Boeing H., Korfmann A., Bergmann M.M. Recruitment procedures of EPIC-Germany. European Investigation into Cancer and Nutrition. Ann. Nutr. Metab. 1999;43(4):205-215. DOI 10.1159/000012787.

5. Brockhausen I., Schachter H. Glycosyltransferases involved in Nand O-glycan biosynthesis. In: Gabius H.-J., Gabius S. (Eds.). Glycosciences. Weinheim: Chapman & Hall, 1997;79-113. DOI 10.1002/9783527614738.ch5.

6. Bulik-Sullivan B., Finucane H.K., Anttila V., Gusev A., Day F.R., Loh P.-R., ReproGen Consortium, Psychiatric Genomics Consortium, Genetic Consortium for Anorexia Nervosa of the Wellcome Trust Case Control Consortium 3, Duncan L., Perry J.R.B., Patterson N., Robinson E.B., Daly M.J., Price A.L., Neale B.M. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 2015;47(11):1236-1241. DOI 10.1038/ng.3406.

7. Chauhan J.S., Rao A., Raghava G.P.S. In silico platform for prediction of N-, Oand C-glycosites in eukaryotic protein sequences. PLoS One. 2013;8(6):e67008. DOI 10.1371/journal.pone.0067008.

8. Clerc F., Novokmet M., Dotz V., Reiding K.R., de Haan N., Kammeijer G.S.M., Dalebout H., Bladergroen M.R., Vukovic F., Rapp E., IBD-BIOM Consortium, Targan S.R., Barron G., Manetti N., Latiano A., McGovern D.P.B., Annese V., Lauc G., Wuhrer M. Plasma N-glycan signatures are associated with features of inflammatory bowel diseases. Gastroenterology. 2018;155(3):829-843. DOI 10.1053/j.gastro.2018.05.030.

9. Clerc F., Reiding K.R., Jansen B.C., Kammeijer G.S.M., Bondt A., Wuhrer M. Human plasma protein N-glycosylation. Glycoconj. J. 2016;33(3):309-343. DOI 10.1007/s10719-015-9626-2.

10. Cobb B.A. The history of IgG glycosylation and where we are now. Glycobiology. 2020;30(4):202-213. DOI 10.1093/glycob/cwz065.

11. Connelly M.A., Gruppen E.G., Otvos J.D., Dullaart R.P.F. Inflammatory glycoproteins in cardiometabolic disorders, autoimmune diseases and cancer. Clin. Chim. Acta. 2016;459:177-186. DOI 10.1016/j.cca.2016.06.012.

12. Craveur P., Rebehmed J., de Brevern A.G. PTM-SD: a database of structurally resolved and annotated posttranslational modifications in proteins. Database (Oxford). 2014;2014:bau041. DOI 10.1093/database/bau041.

13. de Haan N., Pučić-Baković M., Novokmet M., Falck D., LageveenKammeijer G., Razdorov G., Vučković F., Trbojević-Akmačić I., Gornik O., Hanić M., Wuhrer M., Lauc G., The Human Glycome Project. Developments and perspectives in high-throughput protein glycomics: enabling the analysis of thousands of samples. Glycobio­ logy. 2022;32(8):651-663. DOI 10.1093/glycob/cwac026.

14. Dotz V., Wuhrer M. N-glycome signatures in human plasma: associations with physiology and major diseases. FEBS Lett. 2019;593(21): 2966-2976. DOI 10.1002/1873-3468.13598.

15. Dupuy F., Germot A., Marenda M., Oriol R., Blancher A., Julien R., Maftah A. α1,4-fucosyltransferase activity: A significant function in the primate lineage has appeared twice independently. Mol. Biol. Evol. 2002;19(6):815-824. DOI 10.1093/oxfordjournals.molbev.a004138.

16. Egorova K.S., Smirnova N.S., Toukach P.V. CSDB_GT, a curated glycosyltransferase database with close-to-full coverage on three most studied nonanimal species. Glycobiology. 2021;31(5):524-529. DOI 10.1093/glycob/cwaa107.

17. Ferlaino M., Rogers M.F., Shihab H.A., Mort M., Cooper D.N., Gaunt T.R., Campbell C. An integrative approach to predicting the functional effects of small indels in non-coding regions of the human genome. BMC Bioinformatics. 2017;18(1):442. DOI 10.1186/s12859-017-1862-y.

18. Fuster M.M., Esko J.D. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer. 2005;5(7):526-542. DOI 10.1038/nrc1649.

19. Gagneux P., Aebi M., Varki A. Evolution of glycan diversity. In: Varki A., Cummings R.D., Esko J.D., Stanley P., Hart G.W., Aebi M., Darvill A.G., Kinoshita T., Packer N.H., Prestegard J.H., Schnaar R.L., Seeberger P.H. (Eds.). 3rd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 2015–2017. Chapter 20. PMID 28876829. DOI 10.1101/glycobiology.3e.020.

20. Gudelj I., Lauc G., Pezer M. Immunoglobulin G glycosylation in aging and diseases. Cell. Immunol. 2018a;333:65-79. DOI 10.1016/j.cellimm.2018.07.009.

21. Gudelj I., Salo P.P., Trbojević-Akmačić I., Albers M., Primorac D., Perola M., Lauc G. Low galactosylation of IgG associates with higher risk for future diagnosis of rheumatoid arthritis during 10 years of follow-up. Biochim. Biophys. Acta Mol. Basis Dis. 2018b;1864(6 Pt. A):2034-2039. DOI 10.1016/j.bbadis.2018.03.018.

22. Harvey D.J., Merry A.H., Royle L., Campbell M.P., Dwek R.A., Rudd P.M. Proposal for a standard system for drawing structural diagrams of Nand O-linked carbohydrates and related compounds. Proteomics. 2009;9(15):3796-3801. DOI 10.1002/pmic.200900096.

23. Hassinen A., Pujol F.M., Kokkonen N., Pieters C., Kihlström M., Korhonen K., Kellokumpu S. Functional organization of Golgi Nand O-glycosylation pathways involves pH-dependent complex formation that is impaired in cancer cells. J. Biol. Chem. 2011;286(44): 38329-38340. DOI 10.1074/jbc.M111.277681.

24. Hemani G., Zheng J., Elsworth B., Wade K.H., Haberland V., Baird D., Laurin C., Burgess S., Bowden J., Langdon R., Tan V.Y., Yarmolinsky J., Shihab H.A., Timpson N.J., Evans D.M., Relton C., Martin R.M., Davey Smith G., Gaunt T.R., Haycock P.C. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7:e34408. DOI 10.7554/elife.34408.

25. Huffman J.E., Knezevic A., Vitart V., Kattla J., Adamczyk B., Novokmet M., Igl W., Pucic M., Zgaga L., Johannson Å., Redzic I., Gornik O., Zemunik T., Polasek O., Kolcic I., Pehlic M., Koeleman C.A.M., Campbell S., Wild S.H., Hastie N.D., Campbell H., Gyllensten U., Wuhrer M., Wilson J.F., Hayward C., Rudan I., Rudd P.M., Wright A.F., Lauc G. Polymorphisms in B3GAT1, SLC9A9 and MGAT5 are associated with variation within the human plasma N-glycome of 3533 European adults. Hum. Mol. Genet. 2011;20(24):5000-5011. DOI 10.1093/hmg/ddr414.

26. Huffman J.E., Pučić-Baković M., Klarić L., Hennig R., Selman M.H.J., Vučković F., Novokmet M., Krištić J., Borowiak M., Muth T., Polašek O., Razdorov G., Gornik O., Plomp R., Theodoratou E., Wright A.F., Rudan I., Hayward C., Campbell H., Deelder A.M., Reichl U., Aulchenko Y.S., Rapp E., Wuhrer M., Lauc G. Comparative performance of four methods for high-throughput glycosylation analysis of immunoglobulin G in genetic and epidemiological research. Mol. Cell. Proteomics. 2014;13(6):1598-1610. DOI 10.1074/mcp.M113.037465.

27. Jain S., Gautam V., Naseem S. Acute-phase proteins: As diagnostic tool. J. Pharm. Bioallied. Sci. 2011;3(1):118-127. DOI 10.4103/0975-7406.76489.

28. Kanehisa M., Furumichi M., Tanabe M., Sato Y., Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nu­ cleic Acids Res. 2017;45(D1):D353-D361. DOI 10.1093/nar/gkw1092.

29. Kellokumpu S. Golgi pH, ion and redox homeostasis: How much do they really matter? Front. Cell Dev. Biol. 2019;7:93. DOI 10.3389/fcell.2019.00093.

30. Kennedy A.E., Ozbek U., Dorak M.T. What has GWAS done for HLA and disease associations? Int. J. Immunogenet. 2017;44(5):195-211. DOI 10.1111/iji.12332.

31. Keser T., Gornik I., Vučković F., Selak N., Pavić T., Lukić E., Gudelj I., Gašparović H., Biočina B., Tilin T., Wennerström A., Männistö S., Salomaa V., Havulinna A., Wang W., Wilson J.F., Charutvedi N., Perola M., Campbell H., Lauc G., Gornik O. Increased plasma N-glycome complexity is associated with higher risk of type 2 diabetes. Diabetologia. 2017;60(12):2352-2360. DOI 10.1007/s00125017-4426-9.

32. Khoury G.A., Baliban R.C., Floudas C.A. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci. Rep. 2011;1:90. DOI 10.1038/srep00090.

33. Klarić L., Tsepilov Y.A., Stanton C.M., Mangino M., Sikka T.T., Esko T., Pakhomov E., … Wilson J.F., Zoldoš V., Vitart V., Spector T., Aulchenko Y.S., Lauc G., Hayward C. Glycosylation of immunoglobulin G is regulated by a large network of genes pleiotropic with inflammatory diseases. Sci. Adv. 2020;6(8):eaax0301. DOI 10.1126/sciadv.aax0301.

34. Knezević A., Polasek O., Gornik O., Rudan I., Campbell H., Hayward C., Wright A., Kolcic I., O’Donoghue N., Bones J., Rudd P.M., Lauc G. Variability, heritability and environmental determinants of human plasma N-glycome. J. Proteome Res. 2009;8(2):694-701. DOI 10.1021/pr800737u.

35. Kukuruzinska M.A., Lennon K. Protein N-glycosylation: molecular genetics and functional significance. Crit. Rev. Oral Biol. Med. 1998; 9(4):415-448. DOI 10.1177/10454411980090040301.

36. Landini A., Trbojević-Akmačić I., Navarro P., Tsepilov Y.A., Sharapov S.Z., Vučković F., Polašek O., Hayward C., Petrović T., Vilaj M., Aulchenko Y.S., Lauc G., Wilson J.F., Klarić L. Genetic regulation of post-translational modification of two distinct proteins. Nat. Com­ mun. 2022;13(1):1586. DOI 10.1038/s41467-022-29189-5.

37. Lauc G., Essafi A., Huffman J.E., Hayward C., Knežević A., Kattla J.J., Polašek O., … Gyllensten U., Wilson J.F., Wright A.F., Hastie N.D., Campbell H., Rudd P.M., Rudan I. Genomics meets glycomics-the first GWAS study of human N-glycome identifies HNF1α as a master regulator of plasma protein fucosylation. PLoS Genet. 2010a; 6(12):e1001256. DOI 10.1371/journal.pgen.1001256.

38. Lauc G., Huffman J.E., Pučić M., Zgaga L., Adamczyk B., Mužinić A., Novokmet M., … Wuhrer M., Wright A.F., Rudd P.M., Hayward C., Aulchenko Y., Campbell H., Rudan I. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet. 2013; 9(1):e1003225. DOI 10.1371/journal.pgen.1003225.

39. Lauc G., Pezer M., Rudan I., Campbell H. Mechanisms of disease: The human N-glycome. Biochim. Biophys. Acta. 2016;1860(8):15741582. DOI 10.1016/j.bbagen.2015.10.016.

40. Lauc G., Rudan I., Campbell H., Rudd P.M. Complex genetic regulation of protein glycosylation. Mol. Biosyst. 2010b;6(2):329-335. DOI 10.1039/b910377e.

41. Lombard V., Golaconda Ramulu H., Drula E., Coutinho P.M., Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42(D1):D490-D495. DOI 10.1093/nar/gkt1178.

42. Marke R., van Leeuwen F.N., Scheijen B. The many faces of IKZF1 in B-cell precursor acute lymphoblastic leukemia. Haematologica. 2018;103(4):565-574. DOI 10.3324/haematol.2017.185603.

43. Martinvalet D. The role of the mitochondria and the endoplasmic reticulum contact sites in the development of the immune responses. Cell Death Dis. 2018;9(3):336. DOI 10.1038/s41419-017-0237-7.

44. McLaren W., Gil L., Hunt S.E., Riat H.S., Ritchie G.R.S., Thormann A., Flicek P., Cunningham F. The ensembl variant effect predictor. Ge­ nome Biol. 2016;17(1):122. DOI 10.1186/s13059-016-0974-4.

45. Mehta A., Herrera H., Block T. Glycosylation and liver cancer. Adv. Cancer Res. 2015;126:257-279. DOI 10.1016/bs.acr.2014.11.005.

46. Mijakovac A., Miškec K., Krištić J., Vičić Bočkor V., Tadić V., Bošković M., Lauc G., Zoldoš V., Vojta A. A transient expression system with stably integrated CRISPR-dCas9 fusions for regulation of genes involved in immunoglobulin G glycosylation. CRISPR J. 2022;5(2):237-253. DOI 10.1089/crispr.2021.0089.

47. Mizushima T., Yagi H., Takemoto E., Shibata-Koyama M., Isoda Y., Iida S., Masuda K., Satoh M., Kato K. Structural basis for improved efficacy of therapeutic antibodies on defucosylation of their Fc glycans. Genes Cells. 2011;16(11):1071-1080. DOI 10.1111/j.1365-2443.2011.01552.x.

48. Moayyeri A., Hammond C.J., Hart D.J., Spector T.D. The UK adult twin registry (TwinsUK resource). Twin Res. Hum. Genet. 2013; 16(1):144-149. DOI 10.1017/thg.2012.89.

49. Mohanty S., Chaudhary B., Zoetewey D. Structural insight into the mechanism of N-linked glycosylation by oligosaccharyltransferase. Biomolecules. 2020;10(4):624. DOI 10.3390/biom10040624.

50. Moremen K.W., Tiemeyer M., Nairn A.V. Vertebrate protein glycosylation: diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 2012;13(7):448-462. DOI 10.1038/nrm3383.

51. Mulloy B., Dell A., Stanley P., H. Prestegard J. Structural analysis of glycans. In: Varki A., Cummings R.D., Esko J.D., Stanley P., Hart G.W., Aebi M., Darvill A.G., Kinoshita T., Packer N.H., Prestegard J.H., Schnaar R.L., Seeberger P.H. (Eds.). Essentials of Glycobiology. [Internet]. 3rd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 2015. Chapter 50, 2017. DOI 10.1101/glycobiology.3e.050.

52. Nairn A.V., Aoki K., dela Rosa M., Porterfield M., Lim J.-M., Kulik M., Pierce J.M., Wells L., Dalton S., Tiemeyer M., Moremen K.W. Regulation of glycan structures in murine embryonic stem cells. J. Biol. Chem. 2012;287(45):37835-37856. DOI 10.1074/jbc.m112.405233.

53. Nairn A.V., York W.S., Harris K., Hall E.M., Pierce J.M., Moremen K.W. Regulation of glycan structures in animal tissues: transcript profiling of glycan-related genes. J. Biol. Chem. 2008;283(25):17298-17313. DOI 10.1074/jbc.M801964200.

54. Nikolac Perkovic M., Pucic Bakovic M., Kristic J., Novokmet M., Huffman J.E., Vitart V., Hayward C., Rudan I., Wilson J.F., Campbell H., Polasek O., Lauc G., Pivac N. The association between galactosylation of immunoglobulin G and body mass index. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2014;48:20-25. DOI 10.1016/j.pnpbp.2013.08.014.

55. Oda Y., Okada T., Yoshida H., Kaufman R.J., Nagata K., Mori K. Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. J. Cell Biol. 2006;172(3):383-393. DOI 10.1083/jcb.200507057.

56. Ohtsubo K., Marth J.D. Glycosylation in cellular mechanisms of health and disease. Cell. 2006;126(5):855-867. DOI 10.1016/j.cell.2006.08.019.

57. Pasaniuc B., Price A.L. Dissecting the genetics of complex traits using summary association statistics. Nat. Rev. Genet. 2017;18(2):117127. DOI 10.1038/nrg.2016.142.

58. Peipp M., Lammerts van Bueren J.J., Schneider-Merck T., Bleeker W.W.K., Dechant M., Beyer T., Repp R., van Berkel P.H.C., Vink T., van de Winkel J.G.J., Parren P.W.H.I., Valerius T. Antibody fucosylation differentially impacts cytotoxicity mediated by NK and PMN effector cells. Blood. 2008;112(6):2390-2399. DOI 10.1182/blood-2008-03-144600.

59. Pers T.H., Karjalainen J.M., Chan Y., Westra H.-J., Wood A.R., Yang J., Lui J.C., Vedantam S., Gustafsson S., Esko T., Frayling T., Speliotes E.K., Boehnke M., Raychaudhuri S., Fehrmann R.S.N., Hirschhorn J.N., Franke L. Biological interpretation of genomewide association studies using predicted gene functions. Nat. Com­ mun. 2015;6(1):5890. DOI 10.1038/ncomms6890.

60. Poole J., Day C.J., von Itzstein M., Paton J.C., Jennings M.P. Glycointeractions in bacterial pathogenesis. Nat. Rev. Microbiol. 2018; 16(7):440-452. DOI 10.1038/s41579-018-0007-2.

61. Pottier N., Cheok M.H., Yang W., Assem M., Tracey L., Obenauer J.C., Panetta J.C., Relling M.V., Evans W.E. Expression of SMARCB1 modulates steroid sensitivity in human lymphoblastoid cells: identification of a promoter SNP that alters PARP1 binding and SMARCB1 expression. Hum. Mol. Genet. 2007;16(19):2261-2271. DOI 10.1093/hmg/ddm178.

62. Reiding K.R., Bondt A., Hennig R., Gardner R.A., O’Flaherty R., Trbojević-Akmačić I., Shubhakar A., Hazes J.M.W., Reichl U., Fernandes D.L., Pučić-Baković M., Rapp E., Spencer D.I.R., Dolhain R.J.E.M., Rudd P.M., Lauc G., Wuhrer M. High-throughput serum N-glycomics: method comparison and application to study rheumatoid arthritis and pregnancy-associated changes. Mol. Cell. Proteomics. 2019;18(1):3-15. DOI 10.1074/mcp.RA117.000454.

63. Reily C., Stewart T.J., Renfrow M.B., Novak J. Glycosylation in health and disease. Nat. Rev. Nephrol. 2019;15(6):346-366. DOI 10.1038/s41581-019-0129-4.

64. Rivinoja A., Hassinen A., Kokkonen N., Kauppila A., Kellokumpu S. Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases. J. Cell. Physiol. 2009; 220(1):144-154. DOI 10.1002/jcp.21744.

65. Rogers M., Shihab H.A., Mort M., Cooper D., Gaunt T.R., Campbell C. FATHMM-XF: accurate prediction of pathogenic point mutations via extended features. Bioinformatics. 2018;34(3):511-513. DOI 10.1093/bioinformatics/btx536.

66. Russell A.C., Šimurina M., Garcia M.T., Novokmet M., Wang Y., Rudan I., Campbell H., Lauc G., Thomas M.G., Wang W. The N-glycosylation of immunoglobulin G as a novel biomarker of Parkinson’s disease. Glycobiology. 2017;27(5):501-510. DOI 10.1093/glycob/cwx022.

67. Saito M., Ishii A. T3Gal-V (GM3 synthase, SAT-I). In: Handbook of Glycosyltransferases and Related Genes. Tokyo: Springer, 2002; 289-294. DOI 10.1007/978-4-431-67877-9_39.

68. Saldova R., Asadi Shehni A., Haakensen V.D., Steinfeld I., Hilliard M., Kifer I., Helland A., Yakhini Z., Børresen-Dale A.-L., Rudd P.M. Association of N-glycosylation with breast carcinoma and systemic features using high-resolution quantitative UPLC. J. Proteome Res. 2014;13(5):2314-2327. DOI 10.1021/pr401092y.

69. Sellars M., Reina-San-Martin B., Kastner P., Chan S. Ikaros controls isotype selection during immunoglobulin class switch recombination. J. Exp. Med. 2009;206(5):1073-1087. DOI 10.1084/jem.20082311.

70. Shadrina A.S., Zlobin A.S., Zaytseva O.O., Klarić L., Sharapov S.Z., Pakhomov E., Perola M., Esko T., Hayward C., Wilson J.F., Lauc G., Aulchenko Y.S., Tsepilov Y.A. Multivariate genome-wide analysis of immunoglobulin G N-glycosylation identifies new loci pleiotropic with immune function. Hum. Mol. Genet. 2021;30(13):12591270. DOI 10.1093/hmg/ddab072.

71. Sharapov S.Z., Shadrina A.S., Tsepilov Y.A., Elgaeva E.E., Tiys E.S., Feoktistova S.G., Zaytseva O.O., … Dagostino C., Gieger C., Allegri M., Williams F., Schulze M.B., Lauc G., Aulchenko Y.S. Replication of fifteen loci involved in human plasma protein N-glycosylation in 4,802 samples from four cohorts. Glycobiology. 2020; 31(2):82-88. DOI 10.1093/glycob/cwaa053.

72. Sharapov S.Z., Tsepilov Y.A., Klaric L., Mangino M., Thareja G., Shadrina A.S., Simurina M., … Louis E., Georges M., Suhre K., Spector T., Williams F.M.K., Lauc G., Aulchenko Y.S. Defining the genetic control of human blood plasma N-glycome using genomewide association study. Hum. Mol. Genet. 2019;28(12):2062-2077. DOI 10.1093/hmg/ddz054.

73. Shen X., Klarić L., Sharapov S., Mangino M., Ning Z., Wu D., Trbojević-Akmačić I., Pučić-Baković M., Rudan I., Polašek O., Hayward C., Spector T.D., Wilson J.F., Lauc G., Aulchenko Y.S. Multivariate discovery and replication of five novel loci associated with Immunoglobulin G N-glycosylation. Nat. Commun. 2017;8(1):447. DOI 10.1038/s41467-017-00453-3.

74. Skropeta D. The effect of individual N-glycans on enzyme activity. Bioorg. Med. Chem. 2009;17(7):2645-2653. DOI 10.1016/j.bmc.2009.02.037.

75. Spector T.D., Williams F.M.K. The UK adult twin registry (TwinsUK). Twin Res. Hum. Genet. 2006;9(6):899-906. DOI 10.1375/183242706779462462.

76. Staley J.R., Blackshaw J., Kamat M.A., Ellis S., Surendran P., Sun B.B., Paul D.S., Freitag D., Burgess S., Danesh J., Young R., Butterworth A.S. PhenoScanner: a database of human genotypephenotype associations. Bioinformatics. 2016;32(20):3207-3209. DOI 10.1093/bioinformatics/btw373.

77. Staretz-Chacham O., Noyman I., Wormser O., Abu Quider A., Hazan G., Morag I., Hadar N., Raymond K., Birk O.S., Ferreira C.R., Koifman A. B4GALT1-congenital disorders of glycosylation: Expansion of the phenotypic and molecular spectrum and review of the literature. Clin. Genet. 2020;97(6):920-926. DOI 10.1111/cge.13735.

78. Taniguchi N., Honke K., Fukuda M., Narimatsu H., Yamaguchi Y., Angata T. (Eds.). Handbook of Glycosyltransferases and Related Genes. Tokyo: Springer, 2014. DOI 10.1007/978-4-431-54240-7.

79. Taniguchi N., Kizuka Y. Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics. Adv. Cancer Res. 2015;126:11-51. DOI 10.1016/bs.acr.2014.11.001.

80. Thanabalasingham G., Huffman J.E., Kattla J.J., Novokmet M., Rudan I., Gloyn A.L., Hayward C., … Hastie N.D., Campbell H., McCarthy M.I., Rudd P.M., Owen K.R., Lauc G., Wright A.F. Mutations in HNF1A result in marked alterations of plasma glycan profile. Diabetes. 2013;62(4):1329-1337. DOI 10.2337/db12-0880.

81. Theodoratou E., Thaçi K., Agakov F., Timofeeva M.N., Štambuk J., Pučić-Baković M., Vučković F., Orchard P., Agakova A., Din F.V.N., Brown E., Rudd P.M., Farrington S.M., Dunlop M.G., Campbell H., Lauc G. Glycosylation of plasma IgG in colorectal cancer prognosis. Sci. Rep. 2016;6:28098. DOI 10.1038/srep28098.

82. Tillin T., Forouhi N.G., McKeigue P.M., Chaturvedi N., SABRE Study Group. Southall and Brent REvisited: Cohort profile of SABRE, a UK population-based comparison of cardiovascular disease and diabetes in people of European, Indian Asian and African Caribbean origins. Int. J. Epidemiol. 2012;41(1):33-42. DOI 10.1093/ije/dyq175.

83. Trbojević Akmačić I., Ventham N.T., Theodoratou E., Vučković F., Kennedy N.A., Krištić J., Nimmo E.R., Kalla R., Drummond H., Štambuk J., Dunlop M.G., Novokmet M., Aulchenko Y., Gornik O., Campbell H., Pučić Baković M., Satsangi J., Lauc G. Inflammatory bowel disease associates with proinflammatory potential of the im munoglobulin G glycome. Inflamm. Bowel Dis. 2015;21(6):1237-1247. DOI 10.1097/mib.0000000000000372.

84. Uhlén M., Fagerberg L., Hallström B.M., Lindskog C., Oksvold P., Mardinoglu A., Sivertsson Å., … Forsberg M., Persson L., Johansson F., Zwahlen M., von Heijne G., Nielsen J., Pontén F. Proteomics. Tissue-based map of the human proteome. Science. 2015; 347(6220):1260419. DOI 10.1126/science.1260419.

85. Uhlén M., Karlsson M.J., Hober A., Svensson A.-S., Scheffel J., Kotol D., Zhong W., … Voldborg B.G., Tegel H., Hober S., Forsström B., Schwenk J.M., Fagerberg L., Sivertsson Å. The human secretome. Sci. Signal. 2019;12(609):eaaz0274. DOI 10.1126/scisignal.aaz0274.

86. Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 1993;3(2):97-130. DOI 10.1093/glycob/3.2.97.

87. Varki A., Cummings R.D., Esko J.D., Stanley P., Hart G.W., Aebi M., Darvill A.G., Kinoshita T., Packer N.H., Prestegard J.H., Schnaar R.L., Seeberger P.H. (Eds.). Essentials of Glycobiology. [Internet]. 3rd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 2017.

88. Varki A., Kornfeld S. Historical background and overview. In: Varki A., Cummings R.D., Esko J.D., Stanley P., Hart G.W., Aebi M., Darvill A.G., Kinoshita T., Packer N.H., Prestegard J.H., Schnaar R.L., Seeberger P.H. (Eds.). Essentials of Glycobiology. [Internet]. 3rd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 2017.

89. Vilaj M., Lauc G., Trbojević-Akmačić I. Evaluation of different PNGase F enzymes in immunoglobulin G and total plasma N-glycans analysis. Glycobiology. 2021;31(1):2-7. DOI 10.1093/glycob/cwaa047.

90. Visscher P.M., Brown M.A., McCarthy M.I., Yang J. Five years of GWAS discovery. Am. J. Hum. Genet. 2012;90(1):7-24. DOI 10.1016/j.ajhg.2011.11.029.

91. Visscher P.M., Wray N.R., Zhang Q., Sklar P., McCarthy M.I., Brown M.A., Yang J. 10 years of GWAS discovery: Biology, function, and translation. Am. J. Hum. Genet. 2017;101(1):5-22. DOI 10.1016/j.ajhg.2017.06.005.

92. Vreeker G.C.M., Nicolardi S., Bladergroen M.R., van der Plas C.J., Mesker W.E., Tollenaar R.A.E.M., van der Burgt Y.E.M., Wuhrer M. Automated plasma glycomics with linkage-specific sialic acid esterification and ultrahigh resolution MS. Anal. Chem. 2018;90(20): 11955-11961. DOI 10.1021/acs.analchem.8b02391.

93. Vučković F., Theodoratou E., Thaçi K., Timofeeva M., Vojta A., Štambuk J., Pučić-Baković M., Rudd P.M., Đerek L., Servis D., Wennerström A., Farrington S.M., Perola M., Aulchenko Y., Dunlop M.G., Campbell H., Lauc G. IgG glycome in colorectal cancer. Clin. Cancer Res. 2016;22(12):3078-3086. DOI 10.1158/1078-0432.CCR-15-1867.

94. Wahl A., van den Akker E., Klaric L., Štambuk J., Benedetti E., Plomp R., Razdorov G., Trbojević-Akmačić I., Deelen J., van Heemst D., Slagboom P.E., Vučković F., Grallert H., Krumsiek J., Strauch K., Peters A., Meitinger T., Hayward C., Wuhrer M., Beekman M., Lauc G., Gieger C. Genome-wide association study on immunoglobulin G glycosylation patterns. Front. Immunol. 2018;9: 277. DOI 10.3389/fimmu.2018.00277.

95. Wang Y., Klarić L., Yu X., Thaqi K., Dong J., Novokmet M., Wilson J., Polasek O., Liu Y., Krištić J., Ge S., Pučić-Baković M., Wu L., Zhou Y., Ugrina I., Song M., Zhang J., Guo X., Zeng Q., Rudan I., Campbell H., Aulchenko Y., Lauc G., Wang W. The association between glycosylation of immunoglobulin G and hypertension. Medicine (Baltimore). 2016;95(17):e3379. DOI 10.1097/md.0000000000003379.

96. Winkler T.W., Day F.R., Croteau-Chonka D.C., Wood A.R., Locke A.E., Mägi R., Ferreira T., Fall T., Graff M., Justice A.E., Luan J., Gustafsson S., Randall J.C., Vedantam S., Workalemahu T., Kilpeläinen T.O., Scherag A., Esko T., Kutalik Z., Heid I.M., Loos R.J.F., Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Quality control and conduct of genome-wide association meta-analyses.Nat. Protoc. 2014;9(5):1192-1212. DOI 10.1038/nprot.2014.071.

97. Yang J., Ferreira T., Morris A.P., Medland S.E., Genetic Investigation of ANthropometric Traits (GIANT) Consortium, DIAbetes Genetics Replication and Meta-analysis (DIAGRAM) Consortium, Madden P.A.F., Heath A.C., Martin N.G., Montgomery G.W., Weedon M.N., Loos R.J., Frayling T.M., McCarthy M.I., Hirschhorn J.N., Goddard M.E., Visscher P.M. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 2012;44(4):369-375, S1-3. DOI 10.1038/ng.2213.

98. Zaytseva O.O., Freidin M.B., Keser T., Štambuk J., Ugrina I., Šimurina M., Vilaj M., Štambuk T., Trbojević-Akmačić I., Pučić-Baković M., Lauc G., Williams F.M.K., Novokmet M. Heritability of human plasma N-glycome. J. Proteome Res. 2020;19(1):85-91. DOI 10.1021/acs.jproteome.9b00348.

99. Zhu Z., Zhang F., Hu H., Bakshi A., Robinson M.R., Powell J.E., Montgomery G.W., Goddard M.E., Wray N.R., Visscher P.M., Yang J. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 2016;48(5):481-487. DOI 10.1038/ng.3538.


Рецензия

Просмотров: 898


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)