1. Bazhan N., Jakovleva T., Feofanova N., Denisova E., Dubinina A., Sitnikova N., Makarova E. Sex differences in liver, adipose tissue, and muscle transcriptional response to fasting and refeeding in mice. Cells. 2019a;8(12):1529. https://doi.org/10.3390/cells8121529.
2. Bazhan N., Jakovleva T., Balyibina N., Dubinina A., Denisova E., Feofanova N., Makarova E. Sex dimorphism in the Fgf21 gene expression in liver and adipose tissues is dependent on the metabolic condition. OnLine J. Biol. Sci. 2019b;19(1):28-36. https://doi.org/10.3844/ojbsci.2019.28.36.
3. Berglund E.D., Li C.Y., Bina H.A., Lynes S.E., Michael M.D., Shanafelt A.B., Kharitonenkov A., Wasserman D.H. Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology. 2009;150(9):4084-4093. https://doi.org/10.1210/en.2009-0221.
4. Chukijrungroat N., Khamphaya T., Weerachayaphorn J., Songserm T., Saengsirisuwan V. Hepatic FGF21 mediates sex differences in high-fat high-fructose diet-induced fatty liver. Am. J. Physiol. Endocrinol. Metab. 2017;313(2):E203-E212. https://doi.org/10.1152/ajpendo.00076.2017.
5. Coskun T., Bina H.A., Schneider M.A., Dunbar J.D., Hu C.C., Chen Y., Moller D.E., Kharitonenkov A. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology. 2008;149(12):6018-6027. https://doi.org/10.1210/en.2008-0816.
6. Dutchak P.A., Katafuchi T., Bookout A.L., Choi J.H., Yu R.T., Mangelsdorf D.J., Kliewer S.A. Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones. Cell. 2012;148(3):556-567. https://doi.org/10.1016/j.cell.2011.11.062.
7. Figlewicz D.P., Evans S.B., Murphy J., Hoen M., Baskin D.G. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res. 2003;964(1):107-115. https://doi.org/10.1016/s0006-8993(02)04087-8.
8. Fisher F.M., Estall J.L., Adams A.C., Antonellis P.J., Bina H.A., Flier J.S., Kharitonenkov A., Spiegelman B.M., Maratos-Flier E. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology. 2011;152(8):2996-3004. https://doi.org/10.1210/en.2011-0281.
9. Hale C., Chen M.M., Stanislaus S., Chinookoswong N., Hager T., Wang M., Véniant M.M., Xu J. Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology. 2012;153(1):69-80. https://doi.org/10.1210/en.2010-1262.
10. Hill C.M., Qualls-Creekmore E., Berthoud H.R., Soto P., Yu S., McDougal D.H., Münzberg H., Morrison C.D. FGF21 and the physiological regulation of macronutrient preference. Endocrinology. 2020;161(3):bqaa019. https://doi.org/10.1210/endocr/bqaa019.
11. Iakovleva T.V., Kostina N.E., Makarova E.N., Bazhan N.M. Effect of gonadectomy and estradiol on the expression of insulin signaling cascade genes in female and male mice. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2020;24(4):427-434. https://doi.org/10.18699/VJ20.635.
12. Jakovleva T.V., Kazantseva A.Y., Dubinina A.D., Balybina N.Y., Baranov K.O., Makarova E.N., Bazhan N.M. Estradiol-dependent and independent effects of FGF21 in obese female mice. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2022;26(2):159-168. https://doi.org/10.18699/VJGB-22-20.
13. Keinicke H., Sun G., Mentzel C.M.J., Fredholm M., John L.M., Andersen B., Raun K., Kjaergaard M. FGF21 regulates hepatic metabolic pathways to improve steatosis and inflammation. Endocr. Connect. 2020;9(8):755-768. https://doi.org/10.1530/EC-20-0152.
14. Kharitonenkov A., Shiyanova T.L., Koester A., Ford A.M., Micanovic R., Galbreath E.J., Sandusky G.E., Hammond L.J., Moyers J.S., Owens R.A., Gromada J., Brozinick J.T., Hawkins E.D., Wroblewski V.J., Li D.S., Mehrbod F., Jaskunas S.R., Shanafelt A.B. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 2005;115(6):1627-1635. https://doi.org/10.1172/JCI23606.
15. Kharitonenkov A., Adams A.C. Inventing new medicines: The FGF21 story. Mol. Metab. 2013;3(3):221-229. https://doi.org/10.1016/j.molmet.2013.12.003.
16. Makarova E., Kazantseva A., Dubinina A., Denisova E., Jakovleva T., Balybina N., Bgatova N., Baranov K., Bazhan N. Fibroblast growth factor 21 (FGF21) administration sex-specifically affects blood insulin levels and liver steatosis in obese A y mice. Cells. 2021a;10(12):3440. https://doi.org/10.3390/cells10123440.
17. Makarova E., Kazantseva A., Dubinina A., Jakovleva T., Balybina N., Baranov K., Bazhan N. The same metabolic response to FGF21 administration in male and female obese mice is accompanied by sex-specific changes in adipose tissue gene expression. Int. J. Mol. Sci. 2021b;22(19):10561. https://doi.org/10.3390/ijms221910561.
18. Makarova E.N., Yakovleva T.V., Balyibina N.Y., Baranov K.O., Denisova E.I., Dubinina A.D., Feofanova N.A., Bazhan N.M. Pharmacological effects of fibroblast growth factor 21 are sex-specific in mice with the lethal yellow (A y ) mutation. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2020;24(2):200-208. https://doi.org/10.18699/VJ20.40-o.
19. Martínez-Garza Ú., Torres-Oteros D., Yarritu-Gallego A., Marrero P.F., Haro D., Relat J. Fibroblast growth factor 21 and the adaptive response to nutritional challenges. Int. J. Mol. Sci. 2019;20(19):4692. https://doi.org/10.3390/ijms20194692.
20. Owen B.M., Ding X., Morgan D.A., Coate K.C., Bookout A.L., Rahmouni K., Kliewer S.A., Mangelsdorf D.J. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 2014;20(4):670-677. https://doi.org/10.1016/j.cmet.2014.07.012.
21. Sampey B.P., Vanhoose A.M., Winfield H.M., Freemerman A.J., Muehl bauer M.J., Fueger P.T., Newgard C.B., Makowski L. Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity (Silver Spring). 2011;19(6):1109-1117. https://doi.org/10.1038/oby.2011.18.
22. Sun H., Sherrier M., Li H. Skeletal muscle and bone - emerging targets of fibroblast growth factor-21. Front. Physiol. 2021;12:625287. https://doi.org/10.3389/fphys.2021.625287.
23. Talukdar S., Kharitonenkov A. FGF19 and FGF21: In NASH we trust. Mol. Metab. 2021;46:101152. https://doi.org/10.1016/j.molmet.2020.101152.
24. Talukdar S., Owen B.M., Song P., Hernandez G., Zhang Y., Zhou Y., Scott W.T., Paratala B., Turner T., Smith A., Bernardo B., Müller C.P., Tang H., Mangelsdorf D.J., Goodwin B., Kliewer S.A. FGF21 regulates sweet and alcohol preference. Cell Metab. 2016a;23(2):344-349. https://doi.org/10.1016/j.cmet.2015.12.008.
25. Talukdar S., Zhou Y., Li D., Rossulek M., Dong J., Somayaji V., Weng Y., Clark R., Lanba A., Owen B.M., Brenner M.B., Trimmer J.K., Gropp K.E., Chabot J.R., Erion D.M., Rolph T.P., Goodwin B., Calle R.A. A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects. Cell Metab. 2016b;23(3):427-440. https://doi.org/10.1016/j.cmet.2016.02.001.
26. Torre D., Lolli F., Ciana P., Maggi A. Sexual Dimorphism and Estrogen Action in Mouse Liver [published correction appears in Adv. Exp. Med. Biol. 2017;1043:E1]. Adv. Exp. Med. Biol. 2017;1043:141-151. https://doi.org/10.1007/978-3-319-70178-3_8.
27. Vrtačnik P., Ostanek B., Mencej-Bedrač S., Marc J. The many faces of estrogen signaling. Biochem. Med. (Zagreb). 2014;24(3):329-342. https://doi.org/10.11613/BM.2014.035.
28. Xu J., Stanislaus S., Chinookoswong N., Lau Y.Y., Hager T., Patel J., Ge H., Weiszmann J., Lu S.C., Graham M., Busby J., Hecht R., Li Y.S., Li Y., Lindberg R., Véniant M.M. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models-association with liver and adipose tissue effects. Am. J. Physiol. Endocrinol. Metab. 2009;297(5):E1105-E1114. https://doi.org/10.1152/ajpendo.00348.2009.
29. Yang Q., Vijayakumar A., Kahn B.B. Metabolites as regulators of insulin sensitivity and metabolism. Nat. Rev. Mol. Cell Biol. 2018;19(10):654-672. https://doi.org/10.1038/s41580-018-0044-8.
30. Zhang Q., Kong X., Yuan H., Guan H., Li Y., Niu Y. Mangiferin improved Palmitate-induced-insulin resistance by promoting free fatty acid metabolism in HepG2 and C2C12 cells via PPARα: mangiferin improved insulin resistance. J. Diabetes Res. 2019;2019:2052675. https://doi.org/10.1155/2019/2052675.
31. Zhang Y., Xie Y., Berglund E.D., Coate K.C., He T.T., Katafuchi T., Xiao G., Potthoff M.J., Wei W., Wan Y., Yu R.T., Evans R.M., Kliewer S.A., Mangelsdorf D.J. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. Elife. 2012;1:e00065. https://doi.org/10.7554/eLife.00065.
32. Zhao S., Zhu Y., Schultz R.D., Li N., He Z., Zhang Z., Caron A., Zhu Q., Sun K., Xiong W., Deng H., Sun J., Deng Y., Kim M., Lee C.E., Gordillo R., Liu T., Odle A.K., Childs G.V., Zhang N., Kusminski C.M., Elmquist J.K., Williams K.W., An Z., Scherer P.E. Partial leptin reduction as an insulin sensitization and weight loss strategy. Cell Metab. 2019;30(4):706-719.e6. https://doi.org/10.1016/j.cmet.2019.08.005.