Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Studying sex differences in responses to fibroblast growth factor 21 administration in obese mice consuming a sweet-fat diet

https://doi.org/10.18699/VJGB-23-40

Abstract

In animals, obesity caused by consumption of a sweet-fat diet (SFD) is the most adequate mouse model of human diet-induced obesity. Fibroblast growth factor 21 (FGF21) reduces body weight, beneficially affects taste preferences, and corrects glucose metabolism in obese mice. Sex is known to influence FGF21 effects in different models of diet-induced and hereditary obesity. In mice with SFD-induced obesity, the effects of FGF21 have been studied only in males. The aim of this study was to compare the effects of FGF21 on body weight, food preferences and glucose and lipid metabolism in C57Bl/6J male and female mice with SFD-induced obesity. Mice were fed with a diet consisting of standard chow, lard and cookies for 10 weeks, then they were injected with FGF21 (1 mg per 1 kg) or vehicle for 7 days. Body weight, weights of different types of food, blood parameters, glucose tolerance, gene and protein expression in the liver, gene expression in the white, brown adipose tissues, and the hypothalamus were assessed. FGF21 administration reduced body weight, did not alter total energy consumption, and activated orexigenic pathways of hypothalamus in mice of both sexes. However, sex dimorphism was found in the realization of the orexigenic FGF21 action at the transcriptional level in the hypothalamus. Metabolic effects of FGF21 were also sex-specific. Only in males, FGF21 exerted beneficial antidiabetic action: it reduced fatty acid and leptin plasma levels, improved glucose-tolerance, and upregulated hepatic expression of Ppargc1, Fasn, Accα, involved in lipid turnover, gene Insr and protein glucokinase, involved in insulin action. Only in obese females, FGF21 induced preference of standard diet to sweet food. Thus, in mouse model of obesity induced by consumption of a sweet-fat diet, the catabolic effect of FGF21 was not sex-specific and hormonal, transcriptional and behavioral effects of FGF21 were sex-specific. These data suggest elaboration of different approaches to use FGF21 analogs for correction of metabolic consequences of obesity in different sexes.

About the Authors

N. М. Bazhan
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



T. V. Jakovleva
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



A. Yu. Kazantseva
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



N. E. Kostina
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



P. E. Orlov
Novosibirsk State University
Russian Federation

Novosibirsk



N. Yu. Balybina
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



K. О. Baranov
Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



E. N. Makarova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



References

1. Bazhan N., Jakovleva T., Feofanova N., Denisova E., Dubinina A., Sitnikova N., Makarova E. Sex differences in liver, adipose tissue, and muscle transcriptional response to fasting and refeeding in mice. Cells. 2019a;8(12):1529. DOI 10.3390/cells8121529.

2. Bazhan N., Jakovleva T., Balyibina N., Dubinina A., Denisova E., Feofanova N., Makarova E. Sex dimorphism in the Fgf21 gene expression in liver and adipose tissues is dependent on the metabolic condition. OnLine J. Biol. Sci. 2019b;19(1):28-36. DOI 10.3844/ojbsci.2019.28.36.

3. Berglund E.D., Li C.Y., Bina H.A., Lynes S.E., Michael M.D., Shanafelt A.B., Kharitonenkov A., Wasserman D.H. Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology. 2009;150(9):4084-4093. DOI 10.1210/en.2009-0221.

4. Chukijrungroat N., Khamphaya T., Weerachayaphorn J., Songserm T., Saengsirisuwan V. Hepatic FGF21 mediates sex differences in high-fat high-fructose diet-induced fatty liver. Am. J. Physiol. Endocrinol. Metab. 2017;313(2):E203-E212. DOI 10.1152/ajpendo.00076.2017.

5. Coskun T., Bina H.A., Schneider M.A., Dunbar J.D., Hu C.C., Chen Y., Moller D.E., Kharitonenkov A. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology. 2008;149(12):6018-6027. DOI 10.1210/en.2008-0816.

6. Dutchak P.A., Katafuchi T., Bookout A.L., Choi J.H., Yu R.T., Mangelsdorf D.J., Kliewer S.A. Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones. Cell. 2012;148(3):556-567. DOI 10.1016/j.cell.2011.11.062.

7. Figlewicz D.P., Evans S.B., Murphy J., Hoen M., Baskin D.G. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res. 2003;964(1):107-115. DOI 10.1016/s0006-8993(02)04087-8.

8. Fisher F.M., Estall J.L., Adams A.C., Antonellis P.J., Bina H.A., Flier J.S., Kharitonenkov A., Spiegelman B.M., Maratos-Flier E. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology. 2011;152(8):2996-3004. DOI 10.1210/en.2011-0281.

9. Hale C., Chen M.M., Stanislaus S., Chinookoswong N., Hager T., Wang M., Véniant M.M., Xu J. Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology. 2012;153(1):69-80. DOI 10.1210/en.2010-1262.

10. Hill C.M., Qualls-Creekmore E., Berthoud H.R., Soto P., Yu S., McDougal D.H., Münzberg H., Morrison C.D. FGF21 and the physiological regulation of macronutrient preference. Endocrinology. 2020;161(3):bqaa019. DOI 10.1210/endocr/bqaa019.

11. Iakovleva T.V., Kostina N.E., Makarova E.N., Bazhan N.M. Effect of gonadectomy and estradiol on the expression of insulin signaling cascade genes in female and male mice. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2020;24(4):427-434. DOI 10.18699/VJ20.635.

12. Jakovleva T.V., Kazantseva A.Y., Dubinina A.D., Balybina N.Y., Baranov K.O., Makarova E.N., Bazhan N.M. Estradiol-dependent and independent effects of FGF21 in obese female mice. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2022;26(2):159-168. DOI 10.18699/VJGB-22-20.

13. Keinicke H., Sun G., Mentzel C.M.J., Fredholm M., John L.M., Andersen B., Raun K., Kjaergaard M. FGF21 regulates hepatic metabolic pathways to improve steatosis and inflammation. Endocr. Connect. 2020;9(8):755-768. DOI 10.1530/EC-20-0152.

14. Kharitonenkov A., Shiyanova T.L., Koester A., Ford A.M., Micanovic R., Galbreath E.J., Sandusky G.E., Hammond L.J., Moyers J.S., Owens R.A., Gromada J., Brozinick J.T., Hawkins E.D., Wroblewski V.J., Li D.S., Mehrbod F., Jaskunas S.R., Shanafelt A.B. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 2005;115(6):1627-1635. DOI 10.1172/JCI23606.

15. Kharitonenkov A., Adams A.C. Inventing new medicines: The FGF21 story. Mol. Metab. 2013;3(3):221-229. DOI 10.1016/j.molmet.2013.12.003.

16. Makarova E., Kazantseva A., Dubinina A., Denisova E., Jakovleva T., Balybina N., Bgatova N., Baranov K., Bazhan N. Fibroblast growth factor 21 (FGF21) administration sex-specifically affects blood insulin levels and liver steatosis in obese A y mice. Cells. 2021a;10(12):3440. DOI 10.3390/cells10123440.

17. Makarova E., Kazantseva A., Dubinina A., Jakovleva T., Balybina N., Baranov K., Bazhan N. The same metabolic response to FGF21 administration in male and female obese mice is accompanied by sex-specific changes in adipose tissue gene expression. Int. J. Mol. Sci. 2021b;22(19):10561. DOI 10.3390/ijms221910561.

18. Makarova E.N., Yakovleva T.V., Balyibina N.Y., Baranov K.O., Denisova E.I., Dubinina A.D., Feofanova N.A., Bazhan N.M. Pharmacological effects of fibroblast growth factor 21 are sex-specific in mice with the lethal yellow (A y ) mutation. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2020;24(2):200-208. DOI 10.18699/VJ20.40-o.

19. Martínez-Garza Ú., Torres-Oteros D., Yarritu-Gallego A., Marrero P.F., Haro D., Relat J. Fibroblast growth factor 21 and the adaptive response to nutritional challenges. Int. J. Mol. Sci. 2019;20(19):4692. DOI 10.3390/ijms20194692.

20. Owen B.M., Ding X., Morgan D.A., Coate K.C., Bookout A.L., Rahmouni K., Kliewer S.A., Mangelsdorf D.J. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 2014;20(4):670-677. DOI 10.1016/j.cmet.2014.07.012.

21. Sampey B.P., Vanhoose A.M., Winfield H.M., Freemerman A.J., Muehl bauer M.J., Fueger P.T., Newgard C.B., Makowski L. Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity (Silver Spring). 2011;19(6):1109-1117. DOI 10.1038/oby.2011.18.

22. Sun H., Sherrier M., Li H. Skeletal muscle and bone – emerging targets of fibroblast growth factor-21. Front. Physiol. 2021;12:625287. DOI 10.3389/fphys.2021.625287.

23. Talukdar S., Kharitonenkov A. FGF19 and FGF21: In NASH we trust. Mol. Metab. 2021;46:101152. DOI 10.1016/j.molmet.2020.101152.

24. Talukdar S., Owen B.M., Song P., Hernandez G., Zhang Y., Zhou Y., Scott W.T., Paratala B., Turner T., Smith A., Bernardo B., Müller C.P., Tang H., Mangelsdorf D.J., Goodwin B., Kliewer S.A. FGF21 regulates sweet and alcohol preference. Cell Metab. 2016a;23(2):344-349. DOI 10.1016/j.cmet.2015.12.008.

25. Talukdar S., Zhou Y., Li D., Rossulek M., Dong J., Somayaji V., Weng Y., Clark R., Lanba A., Owen B.M., Brenner M.B., Trimmer J.K., Gropp K.E., Chabot J.R., Erion D.M., Rolph T.P., Goodwin B., Calle R.A. A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects. Cell Metab. 2016b;23(3):427-440. DOI 10.1016/j.cmet.2016.02.001.

26. Torre D., Lolli F., Ciana P., Maggi A. Sexual Dimorphism and Estrogen Action in Mouse Liver [published correction appears in Adv. Exp. Med. Biol. 2017;1043:E1]. Adv. Exp. Med. Biol. 2017;1043:141-151. DOI 10.1007/978-3-319-70178-3_8.

27. Vrtačnik P., Ostanek B., Mencej-Bedrač S., Marc J. The many faces of estrogen signaling. Biochem. Med. (Zagreb). 2014;24(3):329-342. DOI 10.11613/BM.2014.035.

28. Xu J., Stanislaus S., Chinookoswong N., Lau Y.Y., Hager T., Patel J., Ge H., Weiszmann J., Lu S.C., Graham M., Busby J., Hecht R., Li Y.S., Li Y., Lindberg R., Véniant M.M. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models–association with liver and adipose tissue effects. Am. J. Physiol. Endocrinol. Metab. 2009;297(5):E1105-E1114. DOI 10.1152/ajpendo.00348.2009.

29. Yang Q., Vijayakumar A., Kahn B.B. Metabolites as regulators of insulin sensitivity and metabolism. Nat. Rev. Mol. Cell Biol. 2018;19(10):654-672. DOI 10.1038/s41580-018-0044-8.

30. Zhang Q., Kong X., Yuan H., Guan H., Li Y., Niu Y. Mangiferin improved Palmitate-induced-insulin resistance by promoting free fatty acid metabolism in HepG2 and C2C12 cells via PPARα: mangiferin improved insulin resistance. J. Diabetes Res. 2019;2019:2052675. DOI 10.1155/2019/2052675.

31. Zhang Y., Xie Y., Berglund E.D., Coate K.C., He T.T., Katafuchi T., Xiao G., Potthoff M.J., Wei W., Wan Y., Yu R.T., Evans R.M., Kliewer S.A., Mangelsdorf D.J. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. Elife. 2012;1:e00065. DOI 10.7554/eLife.00065.

32. Zhao S., Zhu Y., Schultz R.D., Li N., He Z., Zhang Z., Caron A., Zhu Q., Sun K., Xiong W., Deng H., Sun J., Deng Y., Kim M., Lee C.E., Gordillo R., Liu T., Odle A.K., Childs G.V., Zhang N., Kusminski C.M., Elmquist J.K., Williams K.W., An Z., Scherer P.E. Partial leptin reduction as an insulin sensitization and weight loss strategy. Cell Metab. 2019;30(4):706-719.e6. DOI 10.1016/j.cmet.2019.08.005.


Review

Views: 613


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)