Genetic methods in honey bee breeding
https://doi.org/10.18699/VJGB-23-44
Abstract
The honey bee Apis mellifera is a rather difficult object for selection due to the peculiarities of its biology. Breeding activities in beekeeping are aimed at obtaining bee colonies with high rates of economically useful traits, such as productivity, resistance to low temperatures and diseases, hygienic behavior, oviposition of the queen, etc. With two apiaries specializing in the breeding of A. m. mellifera and A. m. carnica as examples, the application of genetic methods in the selection of honey bees is considered. The first stage of the work was subspecies identification based on the analysis of the polymorphism of the intergenic mtDNA locus tRNAleu-COII (or COI-COII) and microsatellite nuclear DNA loci Ap243, 4a110, A24, A8, A43, A113, A88, Ap049, A28. This analysis confirmed that the studied colonies correspond to the declared subspecies. In the apiary with A. m. mellifera, hybrid colonies have been identified. A method based on the analysis of polymorphisms of the tRNAleu-COII locus and microsatellite nuclear DNA loci has been developed to identify the dark forest bee A. m. mellifera and does not allow one to differentiate subspecies from C (A. m. carnica and A. m. ligustica) and O (A. m. caucasica) evolutionary lineages from each other. The second stage was the assessment of the allelic diversity of the csd gene. In the apiary containing colonies of A. m. mellifera (N = 15), 20 csd alleles were identified. In the apiary containing colonies of A. m. carnica (N = 44), 41 alleles were identified. Six alleles are shared by both apiaries. DNA diagnostics of bee diseases showed that the studied colonies are healthy. Based on the data obtained, a scheme was developed for obtaining primary material for honey bee breeding, which can subsequently be subjected to selection according to economically useful traits. In addition, the annual assessment of the allelic diversity of the csd gene will shed light on the frequency of formation of new allelic variants and other issues related to the evolution of this gene.
About the Authors
M. D. KaskinovaRussian Federation
Ufa
A. M. Salikhova
Russian Federation
Ufa
L. R. Gaifullina
Russian Federation
Ufa
E. S. Saltykova
Russian Federation
Ufa
References
1. Bakonyi T., Derakhshifar I., Grabensteiner E., Nowotny N. Development and evaluation of PCR assays for the detection of Paenibacillus larvae in honey samples: comparison with isolation and biochemical characterization. Appl. Environ. Microbiol. 2003;69(3):15041510. DOI 10.1128/AEM.69.3.15041510.2003.
2. Berényi O., Bakonyi T., Derakhshifar I., Köglberger H., Nowotny N. Occurrence of six honeybee viruses in diseased Austrian apiaries. Appl. Environ. Microbiol. 2006;72(4):24142420. DOI 10.1128/AEM.72.4.24142420.2006.
3. Bertrand B., Alburaki M., Legout H., Moulin S., Mougel F., Garnery L. MtDNA COICOII marker and drone congregation area: an efficient method to establish and monitor honeybee (Apis mellifera L.) conservation centers. Mol. Ecol. Resour. 2015;15(3):673683. DOI 10.1111/17550998.12339.
4. Beye M., Hasselmann M., Fondrk M., Page R.E., Omholt S.W. The gene csd is the primary signal for sexual development in the honeybee and encodes an SRtype protein. Cell. 2003;114(4):419429. DOI 10.1016/S00928674(03)006068.
5. Cridland J.M., Tsutsui N.D., Ramírez S.R. The complex demographic history and evolutionary origin of the western honey bee, Apis mellifera. Genome Biol. Evol. 2017;9(2):457472. DOI 10.1093/gbe/evx009.
6. De La Rúa P., Jaffé R., Dall’olio R., Muñoz I., Serrano J. Biodiversity, conservation and current threats to European honeybees. Apidologie. 2009;40:263284. DOI 10.1051/apido/2009027.
7. Earl D.A., von Holdt B.M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012;4(2):359361. DOI 10.1007/s1268601195487.
8. Espregueira Themudo G., ReyIglesia A., Robles Tascon L., Jensen A.B., da Fonseca R.R., Campos P.F. Declining genetic diversity of European honeybees along the twentieth century. Sci. Rep. 2020;10(1):10520. DOI 10.1038/s41598020673702.
9. Garnery L., Franck P., Baudry E., Vautrin D., Cornuet J.M., Solignac M. Genetic diversity of the west European honey bee (Apis melli fera mellifera and A. m. iberica). I. Mitochondrial DNA. Genet. Sel. Evol. 1998;30(Suppl.1):S31. DOI 10.1186/1297968630S1S31.
10. Govan V.A., Brozel V., Allsopp M.H., Davison S. A PCR detection method for rapid identification of Melissococcus pluton in honeybee larvae. Appl. Environ. Microb. 1998;64(5):19831985. DOI 10.1128/AEM.64.5.19831985.1998.
11. Hyink O., Laas F., Dearden P. Genetic tests for alleles of complementary-sex-determiner to support honeybee breeding programmes. Apido logie. 2013;44(3):306313. DOI 10.1007/s1359201201816.
12. Il’yasov R.A., Petukhov A.V., Poskryakov A.V., Nikolenko A.G. Local honeybee (Apis mellifera mellifera L.) populations in the Urals. Russ. J. Genet. 2007;43(6):709711. DOI 10.1134/S1022795407060166.
13. James R.R., Skinner J.S. PCR diagnostic methods for Ascosphaera infections in bees. J. Invertebr. Pathol. 2005;90(2):98103. DOI 10.1016/j.jip.2005.08.004.
14. Kaskinova M.D., Gaifullina L.R., Saltykova E.S., Poskryakov A.V., Nikolenko A.G. Dynamics of the genetic structure of Apis mellifera populations in the Southern Urals. Russ. J. Genet. 2022;58(1):3641. DOI 10.1134/S1022795422010045.
15. Kaskinova M.D., Gataullin A.R., Saltykova E.S., Gaifullina L.R., Poskryakov A.V., Nikolenko A.G. Polymorphism of the hypervariable region of the csd gene in the Apis mellifera L. population in Southern Urals. Russ. J. Genet. 2019;55(2):267270. DOI 10.1134/S102279541902008X.
16. MartínHernández R., Meana A., Prieto L., Salvador A.M., GarridoBailón E., Higes M. Outcome of colonization of Apis mellifera by Nosema ceranae. Appl. Environ. Microbiol. 2007;73(20):63316338. DOI 10.1128/AEM.0027007.
17. Meixner M.D., Pinto M.A., Bouga M., Kryger P., Ivanova E., Fuchs S. Standard methods for characterising subspecies and ecotypes of Apis mellifera. J. Apic. Res. 2013;52(4):128. DOI 10.3896/IBRA.1.52.4.05.
18. Mroczek R., Laszkiewicz A., Blazej P., AdamczykWeglarzy K., NiedbalskaTarnowska J., Cebrat M. New insights into the criteria of functional heterozygosity of the Apis mellifera complementary sex determining gene – discovery of a functional allele pair differing by a single amino acid. PLoS One. 2022;17(8):e0271922. DOI 10.1371/journal.pone.0271922.
19. Neumann P., Carreck N.L. Honey bee colony losses. J. Apic. Res. 2010;49(1):16. DOI 10.3896/IBRA.1.49.1.01.
20. Nikolenko A.G., Fakhretdinova S.A., Ilyasov R.A., Poskryakov A.V. The geographic range of the Burzyan population of the European dark honeybee Apis mellifera mellifera L. (Hymenoptera: Apidae). Trudy Russkogo Entomologicheskogo Obshchestva = Proceedings of the Russian Entomological Society. 2010;81(2):202208. (in Russian)
21. Nikolenko A.G., Poskryakov A.V. Polymorphism of locus COI-COII of mitochondrial DNA in the honeybee Apis mellifera L. from the Southern Ural region. Russ. J. Genet. 2002;38(4):364368. DOI 10.1023/A:1015289900666.
22. Nikonorov I.M., Ben’kovskaya G.V., Poskryakov A.V., Nikolenko A.G., Vakhitov V.A. The use of the PCR technique for control of purebreeding of honeybee (Apis mellifera mellifera L.) colonies from the Southern Urals. Russ. J. Genet. 1998;34(11):13441347.
23. Ruttner F. Breeding Techniques and Selection for Breeding of the Honeybee: an Introduction to the Rearing of Queens, the Conduct of Selection Procedures and the Operation of Mating Stations. Condor, Derby: British Isles Bee Breeders Assoc., 1988.
24. Solignac M., Vautrin D., Loiseau A., Mougel F., Baudry E., Estoup A., Garnery L., Haberl M., Cornuet J.M. Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera L.) genome. Mol. Ecol. Notes. 2003;3(2):307311. DOI 10.1046/j.14718286.2003.00436.x.
25. Tokarev Y.S., Huang W.F., Solter L.F., Malysh J.M., Becnel J.J., Vossbrinck C.R. A formal redefinition of the genera Nosema and Vairimorpha (Microsporidia: Nosematidae) and reassignment of species based on molecular phylogenetics. J. Invertebr. Pathol. 2020;169:107279. DOI 10.1016/j.jip.2019.107279.
26. Zareba J., Blazej P., Laszkiewicz A., Sniezewski L., Majkowski M., Janik S., Cebrat M. Uneven distribution of complementary sex determiner (csd ) alleles in Apis mellifera population. Sci. Rep. 2017;7:2317. DOI 10.1038/s41598017026299.