1. Amr K.S., El-Bassyouni H.T., Abdel Hady S., Mostafa M.I., Mehrez M.I., Coviello D., El-Kamah G.Y. Genetic and molecular evaluation: Reporting three novel mutations and creating awareness of pycnodysostosis disease. Genes. 2021;12(10):1552. https://doi.org/10.3390/genes12101552.
2. Colombo E.A., Bazan J.F., Negri G., Gervasini C., Elcioglu N.H., Yucelten D., Altunay I., Cetincelik U., Teti A., Del Fattore A., Luciani M., Sullivan S.K., Yan A.C., Volpi L., Larizza L. Novel C16orf57 mutations in patients with Poikiloderma with Neutropenia: bioinformatic analysis of the protein and predicted effects of all reported mutations. Orphanet J. Rare Dis. 2012;7:7. https://doi.org/10.1186/1750-1172-7-7.
3. Coudert A.E., de Vernejoul M.C., Muraca M., Del Fattore A. Osteopetrosis and its relevance for the discovery of new functions associated with the skeleton. Int. J. Endocrinol. 2015;2015:372156. https://doi.org/10.1155/2015/372156.
4. De Cuyper E., De Cuyper C., Willems L., Casselman J., Dhooge I., Van Hoecke H. Hearing loss in malignant infantile osteopetrosis: A casebased review. J. Int. Adv. Otol. 2021;17(6):551-558. https://doi.org/10.5152/iao.2021.21266.
5. Frederiksen A.L., Larsen M.J., Brusgaard K., Novack D.V., Knudsen P.J., Schrøder H.D., Qiu W., Eckhardt C., McAlister W.H., Kassem M., Mumm S., Frost M., Whyte M.P. Neonatal high bone mass with first mutation of the NF-κB complex: Heterozygous de novo missense (p.Asp512Ser) RELA (Rela/p65). J. Bone Miner. Res. 2016;31(1):163-172. https://doi.org/10.1002/jbmr.2590.
6. Frost M., Tencerova M., Andreasen C.M., Andersen T.L., Ejersted C., Svaneby D., Qui W., Kassem M., Zarei A., McAlister W.H., Veis D.J., Whyte M.P., Frederiksen A.L. Absence of an osteopetrosis phenotype in IKBKG (NEMO) mutation-positive women: A casecontrol study. Bone. 2019;121:243-254. https://doi.org/10.1016/j.bone.2019.01.014.
7. George A., Zand D.J., Hufnagel R.B., Sharma R., Sergeev Y.V., Legare J.M., Rice G.M., Scott Schwoerer J.A., Rius M., Tetri L., Gamm D.M., Bharti K., Brooks B.P. Biallelic mutations in MITF cause coloboma, osteopetrosis, microphthalmia, macrocephaly, albinism, and deafness. Am. J. Hum. Genet. 2016;99(6):1388-1394. https://doi.org/10.1016/j.ajhg.2016.11.004.
8. Hellemans J., Preobrazhenska O., Willaert A., Debeer P., Verdonk P.C., Costa T., Janssens K., Menten B., Van Roy N., Vermeulen S.J., Savarirayan R., Van Hul W., Vanhoenacker F., Huylebroeck D., De Pae pe A., Naeyaert J.M., Vandesompele J., Speleman F., Verschueren K., Coucke P.J., Mortier G.R. Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheo stosis. Nat. Genet. 2004;36(11):1213-1218. https://doi.org/10.1038/ng1453.
9. Hu B., Duan S., Wang Z., Li X., Zhou Y., Zhang X., Zhang Y.W., Xu H., Zheng H. Insights into the role of CSF1R in the central nervous system and neurological disorders. Front. Aging Neurosci. 2021;13:789834. https://doi.org/10.3389/fnagi.2021.789834.
10. Iida A., Xing W., Docx M.K., Nakashima T., Wang Z., Kimizuka M., Van Hul W., Rating D., Spranger J., Ohashi H., Miyake N., Matsumoto N., Mohan S., Nishimura G., Mortier G., Ikegawa S. Identification of biallelic LRRK1 mutations in osteosclerotic metaphyseal dysplasia and evidence for locus heterogeneity. J. Med. Genet. 2016;53(8):568-574. https://doi.org/10.1136/jmedgenet-2016-103756.
11. Jeoung B.N., Kim J.M., Kang G.E., Lim J.H., Kim E.H., Seo H.A. A first case of osteomesopyknosis in Korea. J. Bone Metab. 2015; 22(2):83-86. https://doi.org/10.11005/jbm.2015.22.2.83.
12. Jimi E., Katagiri T. Critical roles of NF-κB signaling molecules in bone metabolism revealed by genetic mutations in osteopetrosis. Int. J. Mol. Sci. 2022;23(14):7995. https://doi.org/10.3390/ijms23147995.
13. Larizza L., Negri G., Colombo E.A., Volpi L., Sznajer Y. Clinical utility gene card for: poikiloderma with neutropenia. Eur. J. Hum. Genet. 2013;21(10). https://doi.org/10.1038/ejhg.2012.298.
14. Palagano E., Menale C., Sobacchi C., Villa A. Genetics of osteopetrosis. Curr. Osteoporos. Rep. 2018;16(1):13-25. https://doi.org/10.1007/s11914-018-0415-2.
15. Pangrazio A., Fasth A., Sbardellati A., Orchard P.J., Kasow K.A., Raza J., Albayrak C., Albayrak D., Vanakker O.M., De Moerloose B., Vellodi A., Notarangelo L.D., Schlack C., Strauss G., Kühl J.S., Caldana E., Lo Iacono N., Susani L., Kornak U., Schulz A., Vezzoni P., Villa A., Sobacchi C. SNX10 mutations define a subgroup of human autosomal recessive osteopetrosis with variable clinical severity. J. Bone Miner. Res. 2013;28(5):1041-1049. https://doi.org/10.1002/jbmr.1849.
16. Pangrazio A., Puddu A., Oppo M., Valentini M., Zammataro L., Vellodi A., Gener B., Llano-Rivas I., Raza J., Atta I., Vezzoni P., Superti-Furga A., Villa A., Sobacchi C. Exome sequencing identifies CTSK mutations in patients originally diagnosed as intermediate osteopetrosis. Bone. 2014;59:122-126. https://doi.org/10.1016/j.bone.2013.11.014.
17. Penna S., Capo V., Palagano E., Sobacchi C., Villa A. One disease, many genes: Implications for the treatment of osteopetroses. Front. Endocrinol. (Lausanne). 2019;10:85. https://doi.org/10.3389/fendo.2019.00085.
18. Penna S., Villa A., Capo V. Autosomal recessive osteopetrosis: mechanisms and treatments. Dis. Model. Mech. 2021;14(5):dmm048940. https://doi.org/10.1242/dmm.048940.
19. Sanyanga T.A., Nizami B., Bishop Ö.T. Mechanism of action of nonsynonymous single nucleotide variations associated with α-carbonic anhydrase II deficiency. Molecules. 2019;24(21):3987. https://doi.org/10.3390/molecules24213987.
20. Stark Z., Savarirayan R. Osteopetrosis. Orphanet J. Rare Dis. 2009;4:5. https://doi.org/10.1186/1750-1172-4-5.
21. Stattin E.L., Henning P., Klar J., McDermott E., Stecksen-Blicks C., Sandström P.E., Kellgren T.G., Ryden P., Hallmans G., Lönnerholm T., Ameur A., Helfrich M.H., Coxon F.P., Dahl N., Wikström J., Lerner U.H. SNX10 gene mutation leading to osteopetrosis with dysfunctional osteoclasts. Sci. Rep. 2017;7(1):3012. https://doi.org/10.1038/s41598-017-02533-2.
22. Svensson L., Howarth K., McDowall A., Patzak I., Evans R., Ussar S., Moser M., Metin A., Fried M., Tomlinson I., Hogg N. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat. Med. 2009;15(3):306-312. https://doi.org/10.1038/nm.1931.
23. Weisz Hubshman M., Basel-Vanagaite L., Krauss A., Konen O., Levy Y., Garty B.Z., Smirin-Yosef P., Maya I., Lagovsky I., Taub E., Marom D., Gaash D., Shichrur K., Avigad S., Hayman-Manzur L., Villa A., Sobacchi C., Shohat M., Yaniv I., Stein J. Homozygous deletion of RAG1, RAG2 and 5′ region TRAF6 causes severe immune suppression and atypical osteopetrosis. Clin. Genet. 2017;91(6):902-907. https://doi.org/10.1111/cge.12916.
24. Xing W., Goodluck H., Zeng C., Mohan S. Role and mechanism of action of leucine-rich repeat kinase 1 in bone. Bone Res. 2017;5:17003. https://doi.org/10.1038/boneres.2017.3.
25. Zhang S., Liu Y., Zhang B., Zhou J., Li T., Liu Z., Li Y., Yang M. Molecular insights into the human CLC-7/Ostm1 transporter. Sci. Adv. 2020;12;6(33):eabb4747. https://doi.org/10.1126/sciadv.abb4747.
26. Zhou C., Wang Y., Peng J., Li C., Liu P., Shen X. SNX10 plays a critical role in MMP9 secretion via JNK-p38-ERK signaling pathway. J. Cell. Biochem. 2017;118(12):4664-4671. https://doi.org/10.1002/jcb.26132.