Эпигенетическая регуляция ремоделирования костной ткани и ее роль в патогенезе первичного остеопороза
https://doi.org/10.18699/VJGB-23-48
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Полный текст:
Аннотация
Раскрытие молекулярных механизмов развития первичного остеопороза имеет фундаментальное значение как с точки зрения понимания патогенеза заболеваний опорно-двигательного аппарата в целом, так и для выявления ключевых звеньев генетической и эпигенетической регуляции экспрессии генов ремоделирования костной ткани. Количество обнаруженных молекулярно-генетических маркеров остеопороза продолжает расти, однако существует очевидная необходимость описания их функциональных взаимодействий. Установлено, что такие взаимодействия сопряжены с контролем экспрессии ряда факторов транскрипции и дифференцировки мезенхимальных стволовых клеток по пути остеобластогенеза и адипогенеза, а моноцитарных предшественников – по пути остеокластогенеза. Кроме того, результаты эпигенетических исследований значительно расширили понимание роли посттрансляционных модификаций гистонов, ДНК-метилирования и РНК-интерференции как в молекулярном патогенезе первичного остеопороза, так и в регуляции развития костной ткани. Несмотря на это, знания не систематизированы и нуждаются в обобщении данных исследований роли эпигенетических модификаторов в развитии первичного остеопороза, и, что не менее важно, в описании влияния каждого известного эпигенетического механизма на отдельные молекулярные звенья процесса формирования и резорбции костной ткани в течение онтогенеза человека, в том числе у лиц пожилого возраста. Понимание того, какие молекулярно-генетические механизмы и регуляторные системы вовлечены в развитие данной нозологии, представляет потенциальный интерес для создания таргетной терапии, поскольку уже сейчас рассматривается вопрос о возможности применения микроРНК для узконаправленной регуляции генов. Кроме того, систематизация этих данных важна для изучения разницы массивов эпигенетических маркеров, в зависимости от расовой и этнической принадлежности. В представленной обзорной статье проанализированы соответствующие систематические обзоры и оригинальные статьи, собрана и классифицирована информация о современных достижениях в области изучения эпигенетических механизмов и их аберраций при первичном остеопорозе, а также рассмотрены результаты исследований эпигенетических механизмов на отдельных функциональных звеньях ремоделирования костной ткани.
Об авторах
Б. И. ЯлаевРоссия
Уфа; Санкт-Петербург
Р. И. Хусаинова
Россия
Уфа; Санкт-Петербург
Список литературы
1. Afzal F., Pratap J., Ito K., Ito Y., Stein J.L., Wijnen A.J., Stein G.S., Lian J.B., Javed A. Smad function and intranuclear targeting share a Runx2 motif required for osteogenic lineage induction and BMP2 responsive transcription. J. Cell. Physiol. 2005;204(1):63-72. https://doi.org/10.1002/jcp.20258.
2. Albright F., Bloomberg E., Smith P.H. Postmenopausal osteoporosis. Trans. Assoc. Am. Phys. 1940;55:298-305.
3. Amjadi-Moheb F., Akhavan-Niaki H. Wnt signaling pathway in osteoporosis: Epigenetic regulation, interaction with other signaling pathways, and therapeutic promises. J. Cell. Physiol. 2019;234(9):14641-14650. https://doi.org/10.1002/jcp.28207.
4. Anastasilakis A.D., Makras P., Pikilidou M., Tournis S., Makris K., Bisbinas I., Tsave O., Yovos J.G., Yavropoulou M.P. Changes of circulating MicroRNAs in response to treatment with teriparatide or denosumab in postmenopausal osteoporosis. J. Clin. Endocrinol. Metab. 2018;103(3):1206-1213. https://doi.org/10.1210/jc.2017-02406.
5. Bedene A., Bedrac S.M., Jese L., Marc J., Vrtacnik P., Prezelj J., Kocjan T., Kranjc T., Ostanek B. MiR-148a the epigenetic regulator of bone homeostasis is increased in plasma of osteoporotic postmenopausal women. Wien. Klin. Wochenschr. 2016;128(7):519-526. https://doi.org/10.1007/s00508-016-1141-3.
6. Bolland M.J., Siu A.T., Mason B.H., Horne A.M., Ames R.W., Grey A.B., Gamble G.D., Reid I.R. Evaluation of the FRAX and Garvan fracture risk calculators in older women. J. Bone Miner. Res. 2011;26(2):420-427. https://doi.org/10.1002/JBMR.215.
7. Cheishvili D., Parashar S., Mahmood N., Arakelian A., Kremer R., Goltzman D., Szyf M., Rabbani S.A. Identification of an epigenetic signature of osteoporosis in blood DNA of postmenopausal women. J. Bone Miner. Res. 2018;33(11):1980-1989. https://doi.org/10.1002/jbmr.3527.
8. Chen C., Cheng P., Xie H., Zhou H.D., Wu X.P., Liao E.Y., Luo X.H. MiR-503 regulates osteoclastogenesis via targeting RANK. J. Bone Miner. Res. 2014;29(2):338-347. https://doi.org/10.1002/JBMR.2032.
9. Chen Y.H., Chung C.C., Liu Y.C., Yeh S.P., Hsu J.L., Hung M.Ch., Su H.L., Li L.Y. Enhancer of zeste homolog 2 and histone deacetylase 9c regulate age-dependent mesenchymal stem cell differentiation into osteoblasts and adipocytes. Stem Cells. 2016;34(8):2183-2193. https://doi.org/10.1002/stem.2400.
10. Chen Y.H., Yeh F.L., Yeh S.P., Ma H.T., Hung S.C., Hung M.C., Li L.Y. Myocyte enhancer factor-2 interacting transcriptional repressor (MITR) is a switch that promotes osteogenesis and inhibits adipogenesis of mesenchymal stem cells by inactivating peroxisome proliferator-activated receptor γ-2. J. Biol. Chem. 2011;286(12):10671-10680. https://doi.org/10.1074/jbc.M110.199612.
11. Cheng P., Chen C., He H.B., Hu R., Zhou H.D., Xie H., Zhu W., Dai R.C., Wu X.P., Liao E.Y., Luo X.H. miR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B. J. Bone Miner. Res. 2013;28(5):1180-1190. https://doi.org/10.1002/jbmr.1845.
12. Curtis E.M., Fuggle N.R., Cooper P., Harvey N.C. Epigenetic regulation of bone mass. Best Pract. Res. Clin. Endocrinol. Metab. 2022;36(2):101612. https://doi.org/10.1016/j.beem.2021.101612.
13. Delgado-Calle J., Sanudo C., Fernandez A.F., Garcia-Renedo R., Fraga M.F., Riancho J.A. Role of DNA methylation in the regulation of the RANKL-OPG system in human bone. Epigenetics. 2012;7(1):83-91. https://doi.org/10.4161/epi.7.1.18753.
14. Duan L., Zhao H., Xiong Y., Tang X., Yang Y., Hu Z., Li C., Chen S., Yu X. miR-16-2 ∗ interferes with WNT5A to regulate osteogenesis of mesenchymal stem cells. Cell. Physiol. Biochem. 2018;51(3):1087-1102. https://doi.org/10.1159/000495489.
15. Dudakovic A., Camilleri E.T., Riester S.M., Paradise C.R., Gluscevic M., O’Toole T.M., Thaler R., Evans J.M., Yan H., Subramaniam M., Hawse J.R., Stein G.S., Montecino M., McGee-Lawrence M.E., Westendorf J.J., Wijnen A.J. Enhancer of zeste homolog 2 inhibition stimulates bone formation and mitigates bone loss caused by ovariectomy in skeletally mature mice. J. Biol. Chem. 2016;291(47):24594-24606. https://doi.org/10.1074/jbc.M116.740571.
16. Dudakovic A., Camilleri E.T., Xu F., Riester S.M., McGee-Lawrence M.E., Bradley E.W., Paradise C.R., Lewallen E.A., Thaler R., Deyle D.R., Larson A.N., Lewallen D.G., Dietz A.B., Stein G.S., Montecino M.A., Westendorf J.J., Wijnen A.J. Epigenetic control of skeletal development by the histone methyltransferase Ezh2. J. Biol. Chem. 2015;290(46):27604-27617. https://doi.org/10.1074/jbc.M115.672345.
17. Estrada K., Styrkarsdottir U., Evangelou E., … Ioannidis J.P.A., Kiel D.P., Rivadeneira F. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat. Genet. 2012;44(5):491-501. https://doi.org/10.1038/ng.2249.
18. Feng Y., Wan P., Yin L., Lou X. The inhibition of microRNA-139-5p promoted osteoporosis of bone marrow-derived mesenchymal stem cells by targeting Wnt/beta-catenin signaling pathway by Notch1. J. Microbiol. Biotechnol. 2020;30(3):448-458. https://doi.org/10.4014/jmb.1908.08036.
19. Foger-Samwald U., Dovjak P., Azizi-Semrad U., Kerschan-Schindl K., Pietschmann P. Osteoporosis: pathophysiology and therapeutic options. EXCLI J. 2020;19:1017-1037. https://doi.org/10.17179/excli2020-2591.
20. Gao J., Yang T., Han J., Yan K., Qiu X., Zhou Y., Fan Q., Ma B. MicroRNA expression during osteogenic differentiation of human multipotent mesenchymal stromal cells from bone marrow. J. Cell. Biochem. 2011;112(7):1844-1856. https://doi.org/10.1002/jcb.23106.
21. Garmilla-Ezquerra P., Sanudo C., Delgado-Calle J., Perez-Nunez M.I., Sumillera M., Riancho J.A. Analysis of the bone MicroRNome in osteoporotic fractures. Calcif. Tissue Int. 2015;96(1):30-37. https://doi.org/10.1007/s00223-014-9935-7.
22. Ge C., Xiao G., Jiang D., Franceschi R.T. Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J. Cell Biol. 2007;176(5):709-718. https://doi.org/10.1083/JCB.200610046.
23. Ge C., Xiao G., Jiang D., Yang Q., Hatch N.E., Roca H., Franceschi R.T. Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J. Biol. Chem. 2009;284(47):32533-32543. https://doi.org/10.1074/jbc.M109.040980.
24. Ge C., Yang Q., Zhao G., Yu H., Kirkwood K.L., Franceschi R.T. Interactions between extracellular signal-regulated kinase 1/2 and P38 Map kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity. J. Bone Miner. Res. 2012;27(3):538-551. https://doi.org/10.1002/JBMR.561.
25. Gomathi K., Akshaya N., Srinaath N., Moorthi A., Selvamurugan N. Regulation of Runx2 by post-translational modifications in osteoblast differentiation. Life Sci. 2020;245:117389. https://doi.org/10.1016/J.LFS.2020.117389.
26. Hassan M.Q., Tare R., Lee S.H., Mandeville M., Weiner B., Montecino M., Wijnen A.J., Stein J.L., Stein G.S., Lian J.B. HOXA10 controls osteoblastogenesis by directly activating bone regulatory and phenotypic genes. Mol. Cell. Biol. 2007;27(9):3337-3352. https://doi.org/10.1128/mcb.01544-06.
27. Hu H., He X., Zhang Y., Wu R., Chen J., Lin Y., Shen B. MicroRNA alterations for diagnosis, prognosis, and treatment of osteoporosis: a comprehensive review and computational functional survey. Front. Genet. 2020;11:181. https://doi.org/10.3389/FGENE.2020.00181/BIBTEX.
28. Huang B., Li G., Jiang X.H. Fate determination in mesenchymal stem cells: A perspective from histone-modifying enzymes. Stem Cell Res. Ther. 2015;6(1):35. https://doi.org/10.1186/s13287-015-0018-0.
29. Huang G., Shigesada K., Ito K., Wee H.J., Yokomizo T., Ito Y. Dimerization with PEBP2β protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. EMBO J. 2001;20(4):723-733. https://doi.org/10.1093/emboj/20.4.723.
30. Jing H., Liao L., An Y., Su X., Liu S., Shuai Y., Zhang X., Jin Y. Suppression of EZH2 prevents the shift of osteoporotic MSC fate to adipocyte and enhances bone formation during osteoporosis. Mol. Ther. 2016;24(2):217-229. https://doi.org/10.1038/mt.2015.152.
31. Jing H., Su X., Gao B., Shuai Y., Chen J., Deng Z., Liao L., Jin Y. Epigenetic inhibition of Wnt pathway suppresses osteogenic differentiation of BMSCs during osteoporosis. Cell Death Dis. 2018;9(2):176. https://doi.org/10.1038/s41419-017-0231-0.
32. Lei S.F., Papasian C.J., Deng H.W. Polymorphisms in predicted miRNA binding sites and osteoporosis. J. Bone Miner. Res. 2011;26(1):72-78. https://doi.org/10.1002/jbmr.186.
33. Letarouilly J.G., Broux O., Clabaut A. New insights into the epigenetics of osteoporosis. Genomics. 2019;111(4):793-798. https://doi.org/10.1016/J.YGENO.2018.05.001.
34. Li B., Liu J., Zhao J., Ma J.X., Jia H.B., Zhang Y., Xing G.S., Ma X.L. LncRNA-H19 modulates Wnt/β-catenin signaling by targeting Dkk4 in hindlimb unloaded rat. Orthop. Surg. 2017;9(3):319-327. https://doi.org/10.1111/os.12321.
35. Li D., Tian Y., Yin C., Huai Y., Zhao Y., Su P., Wang X., Pei J., Zhang K., Yang C., Dang K., Jiang S., Zhiping M., Li M., Hao Q., Zhang G., Qian A. Silencing of lncRNA AK045490 promotes osteoblast differentiation and bone formation via β-catenin/TCF1/Runx2 signaling axis. Int. J. Mol. Sci. 2019;20(24):6229. https://doi.org/10.3390/ijms20246229.
36. Li H., Li T., Fan J., Li T., Fan L., Wang S., Weng X., Han Q., Zhao R.C. mIR-216a rescues dexamethasone suppression of osteogenesis, promotes osteoblast differentiation and enhances bone formation, by regulating c-Cbl-mediated PI3K/AKT pathway. Cell Death Differ. 2015;22(12):1935-1945. https://doi.org/10.1038/cdd.2015.99.
37. Li H., Xiao Z., Quarles L.D., Li W. Osteoporosis: mechanism, molecular target and current status on drug development. Curr. Med. Chem. 2020;28(8):1489-1507. https://doi.org/10.2174/0929867327666200330142432.
38. Li J., He X., Wei W., Zhou X. MicroRNA-194 promotes osteoblast differentiation via downregulating STAT1. Biochem. Biophys. Res. Commun. 2015;460(2):482-488. https://doi.org/10.1016/J.BBRC.2015.03.059.
39. Li Y., Ge C., Franceschi R.T. MAP kinase-dependent RUNX2 phosphorylation is necessary for epigenetic modification of chromatin during osteoblast differentiation. J. Cell. Physiol. 2017;232(9):2427-2435. https://doi.org/10.1002/jcp.25517.
40. Lorentzon M., Cummings S.R. Osteoporosis: the evolution of a diag nosis. J. Intern. Med. 2015;277(6):650-661. https://doi.org/10.1111/joim.12369.
41. Makitie R.E., Hackl M., Niinimaki R., Kakko S., Grillari J., Makitie O. Altered microRNA profile in osteoporosis caused by impaired WNT signaling. J. Clin. Endocrinol. Metab. 2018;103(5):1985-1996. https://doi.org/10.1210/jc.2017-02585.
42. Marshall D., Johnell O., Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. Br. Med. J. 1996;312(7041):1254-1259. https://doi.org/10.1136/bmj.312.7041.1254.
43. Morris J.A., Tsai P.C., Joehanes R., Zheng J., Trajanoska K., Soerensen M., Forgetta V., Castillo-Fernandez J.E., Frost M., Spector T.D., Christensen K., Christiansen L., Rivadeneira F., Tobias J.H., Evans D.M., Kiel D.P., Hsu Y.H., Richards J.B., Bell J.T. Epi genome-wide association of DNA methylation in whole blood with bone mineral density. J. Bone Miner. Res. 2017;32(8):1644. https://doi.org/10.1002/JBMR.3148.
44. Qadir A.S., Um S., Lee H., Baek K., Seo B.M., Lee G., Kim G.S., Woo K.M., Ryoo H.M., Baek J.H. miR-124 negatively regulates osteogenic differentiation and in vivo bone formation of mesenchymal stem cells. J. Cell. Biochem. 2015;116(5):730-742. https://doi.org/10.1002/JCB.25026.
45. Raisz L.G. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J. Clin. Invest. 2005;115(12):3318-3325. https://doi.org/10.1172/JCI27071.
46. Reppe S., Noer A., Grimholt R.M., Halldorsson B.V., Carolina M.G., Gautvik V.T., Olstad O.K., Berg J.P., Datta H., Estrada K., Hofman A., Uitterlinden A.G., Rivadeneira F., Lyle R., Collas P., Gautvik K.M. Methylation of bone SOST, its mRNA, and serum sclerostin levels correlate strongly with fracture risk in postmenopausal women. J. Bone Miner. Res. 2015;30(2):249-256. https://doi.org/10.1002/JBMR.2342.
47. Riggs B.L., Wahner H.W., Seeman E., Offord K.P., Dunn W.L., Mazess R.B., Johnson K.A., Melton L.J. Changes in bone mineral density of the proximal femur and spine with aging. Differences between the postmenopausal and senile osteoporosis syndromes. J. Clin. Invest. 1982;704(4):716-723. https://doi.org/10.1172/JCI110667.
48. Rivadeneira F., Styrkarsdottir U., Estrada K., … Stefansson K., Ioannidis J.P.A., Uitterlinden A.G. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat. Genet. 2009;41(11):1199-1206. https://doi.org/10.1038/ng.446.
49. Selvamurugan N., He Z., Rifkin D., Dabovic B., Partridge N. Pulsed electromagnetic field regulates microRNA 21 expression to activate TGF-β signaling in human bone marrow stromal cells to enhance osteoblast differentiation. Stem Cells Int. 2017;2017:2450327. https://doi.org/10.1155/2017/2450327.
50. Selvamurugan N., Pulumati M.R., Tyson D.R., Partridge N.C. Parathyroid hormone regulation of the rat collagenase-3 promoter by protein kinase A-dependent transactivation of core binding factor α1. J. Biol. Chem. 2000;275(7):5037-5042. https://doi.org/10.1074/JBC.275.7.5037.
51. Selvamurugan N., Shimizu E., Lee M., Liu T., Li H., Partridge N.C. Identification and characterization of Runx2 phosphorylation sites involved in matrix metalloproteinase-13 promoter activation. FEBS Lett. 2009;583(7):1141-1146. https://doi.org/10.1016/J.FEBSLET.2009.02.040.
52. Shi C., Huang P., Kang H., Hu B., Qi J., Jiang M., Zhou H., Guo L., Deng L. Glucocorticoid inhibits cell proliferation in differentiating osteoblasts by microRNA-199a targeting of WNT signaling. J. Mol. Endocrinol. 2015;54(3):325-337. https://doi.org/10.1530/JME-14-0314.
53. Soltanoff C.S., Yang S., Chen W., Li Y.P. Signaling networks that control the lineage commitment and differentiation of bone cells. Crit. Rev. Eukaryot. Gene Expr. 2009;19(1):1-46. https://doi.org/10.1615/CritRevEukarGeneExpr.v19.i1.10.
54. Souza M.P.G. Osteoporosis diagnosis and treatment. Rev. Bras. Ortop. 2010;45(3):220-229. https://doi.org/10.1016/S2255-4971(15)30361-X.
55. Stein G.S., Lian J.B., Wijnen A.J., Stein J.L., Montecino M., Javed A., Zaidi S.K., Young D.W., Choi J.Y., Pockwinse S.M. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene. 2004;23(24):4315-4329. https://doi.org/10.1038/sj.onc.1207676.
56. Sun M., Cao Y., Yang X., An F., Wu H., Wang J. DNA methylation in the OPG/RANK/RANKL pathway is associated with steroid-induced osteonecrosis of the femoral head. BMC Musculoskelet. Disord. 2021;22(1):599. https://doi.org/10.1186/s12891-021-04472-6.
57. Sveshnikov A.A. Mineral Density of Skeletal Bones, Muscle Mass, and Issues of Fracture Prevention. Moscow: Akademiya Yeste stvo znaniya Publ., 2013. (in Russian)
58. Tang X., Lin J., Wang G., Lu J. MicroRNA-433-3p promotes osteoblast differentiation through targeting DKK1 expression. PLoS One. 2017;12(6):0179860. https://doi.org/10.1371/JOURNAL.PONE.0179860.
59. Thomas P.A. Racial and ethnic differences in osteoporosis. J. Am. Acad. Orthop. Surg. 2007;15(1):26-30. https://doi.org/10.5435/00124635-200700001-00008.
60. Tobeiha M., Moghadasian M.H., Amin N., Jafarnejad S. RANKL/RANK/OPG pathway: a mechanism involved in exercise-induced bone remodeling. Biomed. Res. Int. 2020;2020:6910312. https://doi.org/10.1155/2020/6910312.
61. Wang H., Sun Z., Wang Y., Hu Z., Zhou H., Zhang L., Hong B., Zhang S., Cao X. miR-33-5p, a novel mechano-sensitive microRNA promotes osteoblast differentiation by targeting Hmga2. Sci. Rep. 2016;6:23170. https://doi.org/10.1038/SREP23170.
62. Wang J., Guan X., Guo F., Zhou J., Chang A., Sun B., Cai Y., Ma Z., Dai C., Li X., Wang B. miR-30e reciprocally regulates the differentiation of adipocytes and osteoblasts by directly targeting low-density lipoprotein receptor-related protein 6. Cell Death Dis. 2013;4(10):845. https://doi.org/10.1038/cddis.2013.356.
63. Wang P., Cao Y., Zhan D., Wang D., Wang B., Liu Y., Li G., He W., Wang H., Xu L. Influence of DNA methylation on the expression of OPG/RANKL in primary osteoporosis. Int. J. Med. Sci. 2018;15(13):1480-1485. https://doi.org/10.7150/ijms.27333.
64. Wee H.J., Huang G., Shigesada K., Ito Y. Serine phosphorylation of RUNX2 with novel potential functions as negative regulatory mechanisms. EMBO Rep. 2002;3(10):967-974. https://doi.org/10.1093/embo-reports/kvf193.
65. Wei Y., Chen Y.H., Li L.Y., Lang J., Yeh S.P., Shi B., Yang C.C., Yang J.Y., Lin C.Y., Lai C.C., Hung M.C. CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells. Nat. Cell Biol. 2011;13(1):87-94. https://doi.org/10.1038/ncb2139.
66. Weilner S., Schraml E., Wieser M., Messner P., Schneider K., Wassermann K., Micutkova L., Fortschegger K., Maier A., Westendorp R., Resch H., Wolbank S., Redl H., Jansen-Durr P., Pietschmann P., Grillari-Voglauer R., Grillari J. Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells. Aging Cell. 2016;15(4):744-754. https://doi.org/10.1111/acel.12484.
67. Wein M.N., Liang Y., Goransson O., Sundberg T.B., Wang J., Williams E.A., O’Meara M.J., Govea N., Beqo B., Nishimori S., Nagano K., Brooks D.J., Martins J.S., Corbin B., Anselmo A., Sadreyev R., Wu J.Y., Sakamoto K., Foretz M., Xavier R.J., Baron R., Bouxsein M., Gardella T.J., Divieti-Pajevic P., Gray N.S., Kronenberg H.M. SIKs control osteocyte responses to parathyroid hormone. Nat. Commun. 2016;7:13176. https://doi.org/10.1038/ncomms13176.
68. Wein M., Spatz J., Nishimori S., Doench J., Root D., Babij P., Nagano K., Baron R., Brooks D., Bouxsein M., Pajevic P.D., Kronenberg H.M. HDAC5 controls MEF2C-driven sclerostin expression in osteocytes. J. Bone Miner. Res. 2015;30(3):400-411. https://doi.org/10.1002/jbmr.2381.
69. Wiedl A., Forch S., Fenwick A., Mayr E. Fractures’ associated mortality risk in orthogeriatric inpatients: a prospective 2-year survey. Eur. Geriatr. Med. 2020;12(1):61-68. https://doi.org/10.1007/s41999-020-00392-1.
70. Wood C.L., Stenson C., Embleton N. The developmental origins of osteoporosis. Curr. Genomics. 2015;16(6):411. https://doi.org/10.2174/1389202916666150817202217.
71. Xu F., Li W., Yang X., Na L., Chen L., Liu G. The roles of epigenetics regulation in bone metabolism and osteoporosis. Front Cell Dev. Biol. 2020;8:619301. https://doi.org/10.3389/fcell.2020.619301.
72. Xu Y., Ma J., Xu G., Ma D. Recent advances in the epigenetics of bone metabolism. J. Bone Miner. Metab. 2021;39(6):914-924. https://doi.org/10.1007/s00774-021-01249-8.
73. Yalaev B.I., Khusainova R.I. Epigenetics of osteoporosis. Meditsin skaya Genetika = Medical Genetics. 2018;17(6):3-10. https://doi.org/10.25557/2073-7998.2018.06.3-10. (in Russian)
74. Yalaev B.I., Khusainova R.I. Study of the rs2910164 polymorphic variant of miR-146a microRNA gene in patients with primary osteoporosis. Geny i Kletki = Genes and Cells. 2020;15(4):40-45. https://doi.org/10.23868/202012007. (in Russian)
75. Yalaev B.I., Tyurin A.V., Mirgalieva R.I., Khusnutdinova E.K., Khusainova R.I. Investigating the role of osteoprotegerin gene polymorphic variants in osteoporosis. Russ. Open Med. J. 2021;10(1):e0101. https://doi.org/10.15275/RUSOMJ.2021.0101.
76. Yang D., Okamura H., Nakashima Y., Haneji T. Histone demethylase Jmjd3 regulates osteoblast differentiation via transcription factors Runx2 and osterix. J. Biol. Chem. 2013;288(47):33530-33541. https://doi.org/10.1074/jbc.M113.497040.
77. Yang K., Tian N., Liu H., Tao X.Z., Wang M.X., Huang W. LncRNAp21 promotes osteogenic differentiation of mesenchymal stem cells in the rat model of osteoporosis by the Wnt/β-catenin signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2019;23(10):4303-4309. https://doi.org/10.26355/EURREV_201905_17935.
78. Yang M., Pan Y., Zhou Y. miR-96 promotes osteogenic differentiation by suppressing HBEGF-EGFR signaling in osteoblastic cells. FEBS Lett. 2014;588(24):4761-4768. https://doi.org/10.1016/J.FEBSLET.2014.11.008.
79. Yang Y., Yujiao W., Fang W., Linhui Y., Ziqi G., Zhichen W., Zirui W., Shengwang W. The roles of miRNA, lncRNA and circRNA in the development of osteoporosis. Biol. Res. 2020;53(1):40. https://doi.org/10.1186/s40659-020-00309-z.
80. Yin C., Tian Y., Yu Y., Wang H., Wu Z., Huang Z., Zhang Y., Li D., Yang C., Wang X., Li Y., Qian A. A novel long noncoding RNA AK016739 inhibits osteoblast differentiation and bone formation. J. Cell. Physiol. 2019;2347(7):11524-11536. https://doi.org/10.1002/jcp.27815.
81. Yu W., Wang H.L., Zhang J., Yin C. The effects of epigenetic modifications on bone remodeling in age-related osteoporosis. Connect. Tissue Res. 2022;1-12. https://doi.org/10.1080/03008207.2022.2120392.
82. Zhang J.G., Tan L.J., Xu C., He H., Tian Q., Zhou Y., Qiu C., Chen X.D., Deng H.W. Integrative analysis of transcriptomic and epigenomic data to reveal regulation patterns for BMD variation. PLoS One. 2015;10(9):0138524. https://doi.org/10.1371/journal.pone.0138524.
83. Zhang R.F., Liu J.W., Yu S.P., Sun D., Wang X.H., Fu J.S., Xie Z. LncRNA UCA1 affects osteoblast proliferation and differentiation by regulating BMP-2 expression. Eur. Rev. Med. Pharmacol. Sci. 2019;23(16):6774-6782. https://doi.org/10.26355/eurrev_201908_18715.
84. Zhang W., Wu Y., Shiozaki Y., Sugimoto Y., Takigawa T., Tanaka M., Matsukawa A., Ozaki T. miRNA-133a-5p inhibits the expression of osteoblast differentiation-associated markers by targeting the 3′ UTR of RUNX2. DNA Cell Biol. 2018;37(3):199-209. https://doi.org/10.1089/dna.2017.3936.
85. Zhang Y., Gao Y., Cai L., Li F., Lou Y., Xu N., Kang Y., Yang H. MicroRNA-221 is involved in the regulation of osteoporosis through regulates RUNX2 protein expression and osteoblast differentiation. Am. J. Transl. Res. 2017;9(1):126-135.