Таксономическая и экофизиологическая характеристика актинобактерий почв сухостепной зоны Селенгинского среднегорья (Западное Забайкалье)
https://doi.org/10.18699/VJGB-23-49
Аннотация
Засушливые местообитания привлекают все больше внимания с точки зрения исследования биоразнообразия и обнаружения новых видов бактерий. Они являются одними из целевых экосистем для выделения новых штаммов актинобактерий, которые с большой вероятностью могут продуцировать новые метаболиты. В настоящей работе представлены результаты по выделению актинобактерий из почв сухостепной зоны Селенгинского среднегорья, их таксономическому разнообразию и эколого-трофическим свойствам. Численность бактерий на крахмало-аммиачной среде колебалась от 6.6 × 105 до 7.1 × 106 КОЕ/г. Максимальные значения численности были отмечены в подповерхностных и срединных горизонтах исследуемых почв. Получено 28 штаммов грамположительных бактерий, представленных тонким разветвленным мицелием, кокковидными и палочковидными формами. По результатам анализа последовательностей гена 16S рРНК выделенные культуры были отнесены к родам Streptomyces, Arthrobacter, Glycomyces, Kocuria, Microbacterium, Micromonospora, Nocardioides, Pseudarthrobacter и Rhodococcus филума Actinomycetota. Один изолят, показавший низкое сходство последовательности гена 16S рРНК с ранее выделенными и достоверно описанными видами, представлял собой новый вид рода Glycomyces. Все исследуемые штаммы мезофильны, предпочитают нейтральные или слабощелочные условия, имеют границы роста в диапазоне температур от 5 до 45 °С и значений рН от 6 до 9. Оптимальная концентрация NaCl для роста культур составляла от 0 до 1 %. Исследуемые штаммы были способны утилизировать в качестве источника углерода достаточно широкий спектр моно- и дисахаридов, многоатомных спиртов. В качестве источника азота выделенные культуры использовали как органические (белки и аминокислоты), так и неорганические (соли аммония и нитраты) соединения. Исследование наличия внеклеточных ферментов показало, что все культуры могли продуцировать каталазу и амилазу, 78.6 % от общего количества изолятов продуцировали протеазу и липазу, 53.6 % – целлюлазу, 28.6 % – уреазу. Полученные данные расширяют знания о разнообразии микробных сообществ почв Селенгинского среднегорья и подтверждают, что данные почвы представляют интерес с точки зрения поиска новых видов актинобактерий.
Об авторах
Е. П. НикитинаРоссия
Улан-Удэ
Л. Б. Буянтуева
Россия
Улан-Удэ
Е. Ю. Абидуева
Россия
Улан-Удэ
Ч.-Х. Сун
Китай
Пекин
Список литературы
1. Asgarani E., Soudi M.R., Borzooee F., Dabbagh R. Radio-resistance in psychrotrophic Kocuria sp. ASB 107 isolated from Ab-e-Siah radioactive spring. J. Environ. Radioact. 2012;113:171-176. DOI 10.1016/j.jenvrad.2012.04.009.
2. Bao Y., Dolfing J., Guo Z., Chen R., Wu W., Li Z., Lin X., Feng Y. Important ecophysiological roles of non-dominant Actinobacteria in plant residue decomposition, especially in less fertile soils. Microbiome. 2021;9:84. DOI 10.1186/s40168-021-01032-x.
3. Batuev A.R., Buyantuev A.B., Snytko V.A. Geosystems and Mapping of Ecogeographical Situations in Selenga Basins of the Baikal Region. Novosibirsk, 2000. (in Russian)
4. Buyantueva L.B., Nikitina E.P., Namsaraev B.B. Actinomycete communities of chestnut soils of steppe pastures in Buryatia. Vestnik Buryatskogo Gosuniversiteta = Herald of the Buryat State University. 2014;4(2):55-58. (in Russian)
5. Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. DOI 10.1186/1471-2105-10-421.
6. Chimitdorzhieva G.D., Chimitdorzhieva E.O. Structure of humic acids in dry-steppe soils of Transbaikalia. Uspekhi Sovremennogo Yestestvoznaniya = Advances in Modern Natural Science. 2021;12:89-94. (in Russian)
7. Cockell C.S., Kelly L.C., Marteinsson V. Actinobacteria – an ancient phylum active in volcanic rock weathering. Geomicrobiol. J. 2013;30:706-720. DOI 10.1080/01490451.2012.758196.
8. DeLong E.F. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA. 1992;89:5685-5689. DOI 10.1073/pnas.89.12.5685.
9. Dobrovol’skaya T.G. Structure of Soil Bacterial Communities. Moscow, 2002. (in Russian)
10. Ecological Atlas of Lake Baikal Basin. Irkutsk, 2015.
11. Gordon R.E., Bennett D.A., Handerhan J.E., Pang C.H. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int. J. Syst. Bacteriol. 1974;24:54-63.
12. Hazarika S.N., Thakur D. Actinobacteria. In: Amaresan N., Senthil Kumar M., Annapurna K., Kumar K., Sankaranarayanan A. (Eds.) Beneficial Microbes in Agro-Ecology. Cambridge, 2020;443-476. DOI 10.1016/B978-0-12-823414-3.00021-6.
13. Kalakuckiy L.V., Agre N.S. Development of Actinomycetes. Moscow, 1977. (in Russian)
14. Kumar S., Stecher G., Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870-1874.
15. Kurapova A.I., Zenova G.M., Sudnitsyn I.I., Kizilova A.K., Manucharova N.A., Norovsuren Zh., Zviagintsev D.G. Thermotolerant and thermophilic Actinomycetes from soils of Mongolia desert steppe zone. Microbiology. 2012;81:98-108. DOI 10.1134/S0026261712010092.
16. Labeda D.P., Goodfellow M., Brown R., Ward A.C., Lanoot B., Vanncanneyt M., Swings J., Kim S.-B., Liu Z., Chun J., Tamura T., Oguchi A., Kikuchi T., Kikuchi H., Nishii T., Tsuji K., Yamaguchi Y., Tase A., Takahashi M., Sakane T., Suzuki K.I., Hatano K. Phylogenetic study of the species within the family Streptomycetaceae. Anton. Leeuw. Int. J. 2012;1(101):73-104.
17. Lechevalier M.P. Ecological associations involving actinomycetes. In: Schaal K., Pulverer G. (Eds.) Actinomycetes. Stuttgart, New York, 1981;159-166.
18. Leo V.V., Asem D., Zothanpuia, Singh B.P. Actinobacteria: a highly potent source for holocellulose degrading enzymes in Actinobacteria. In: New and Future Developments in Microbial Biotechnology and Bioengineering. 2018;191-205. DOI 10.1016/b978-0-444-63994-3.00013-8.
19. Manucharova N.A., Belova E.V., Polyanskaya L.M., Zenova G.M. A chitinolytic actinomycete complex in chernozem soil. Microbiology. 2004;73(1):56-59.
20. McCarthy A.J., Williams S.T. Actinomycetes as agents of biodegradation in the environment – a review. Gene. 1992;115(1-2):189-192.
21. Mineev V.G. (Ed.) Manual on Agrochemistry. Moscow, 2001. (in Russian)
22. Mohammadipanah F., Wink J. Actinobacteria from arid and desert habitats: diversity and biological activity. Front. Microbiol. 2016;6:1-10.
23. Nikitina E., Liu S.W., Li F.N., Buyantueva L., Abidueva E., Sun C.H. Glycomyces buryatensis sp. nov., an actinobacterium isolated from steppe soil. Int. J. Syst. Evol. Microbiol. 2020;70:1356-1363. DOI 10.1099/ijsem.0.003923.
24. Nimaeva S.Sh. Microbiology of Cryoarid Soils. Novosibirsk, 1992. (in Russian)
25. Nogina N.A. Soils of Transbaikalia. Moscow, 1964. (in Russian)
26. Shirling E.B., Gottlieb D. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 1966;16(3):313-340.
27. Tepper E.Z. Microorganisms of the genus Nocardia and humus decomposition. Agrokhimiya = Agricultural Chemistry. 1981;5:156-157. (in Russian)
28. Urbano S.B., Albarracin V.H., Urbano O.F., Farias M.E., Alvarez H.M. Lipid storage in high-altitude Andean Lakes extremophiles and its mobilization under stress conditions in Rhodococcus sp. A5, a UVresistant actinobacterium. Extremophiles. 2013;17(2):217-227. DOI 10.1007/s00792-012-0508-2.
29. Ventura M., Canchaya C., Tauch A., Chandra G., Fitzgerald G.F., Chater K.F., van Sinderen D. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 2007;71(3):495-548.
30. Wang C., Dong D., Wang H., Muller K., Qin Y., Wang H., Wu W. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol. Biofuels. 2016;9:22. DOI 10.1186/s13068-016-0440-2.
31. Williams S.T., Goodfellow M., Alderson G., Wellington E.M.H., Sneath P.H.A., Sackin M.J. Numerical classification of Streptomyces and related genera. J. Gen. Microbiol. 1983;129:1743-1819.
32. Wink J., Mohammadipanah F., Hamedi J. (Eds.) Biology and Biotechnology of Actinobacteria. Berlin: Springer, 2017. DOI 10.1007/978-3-319-60339-1.
33. Wu C.Y., Zhuang L., Zhou S.G., Li F.B., He J. Corynebacterium humireducens sp. nov., an alkaliphilic, humic acid-reducing bacterium isolated from a microbial fuel cell. Int. J. Syst. Evol. Microbiol. 2011;61:882-887. DOI 10.1099/ijs.0.020909-0.
34. Xie F., Pathom-aree W. Actinobacteria from desert: diversity and biotechnological applications. Front. Microbiol. 2021;12:765531. DOI 10.3389/fmicb.2021.765531.
35. Xu P., Li W.J., Tang S.K., Zhang Y.Q., Chen G.Z., Chen H.H., Xu L.H., Jiang C.L. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family Oxalobacteraceae isolated from China. Int J. Syst. Evol. Microbiol. 2005;55:1149-1153. DOI 10.1099/ijs.0.63407-0.
36. Yaradoddi J.S., Kontro M.H., Banapurmath N.R., Ganachari S.V., Sulochana M.B., Hungund B.S., Kazi Z.K. Anilkumar S.K., Oli A. Extremophilic Actinobacteria. In: Yaradoddi J.S., Kontro M.H., Ganachari S.V. (Eds.) Actinobacteria. Rhizosphere Biology. Singapore: Springer, 2021;55-68. DOI 10.1007/978-981-16-3353-9_4(2021).
37. Yoon S.H., Ha S.M., Kwon S., Lim J., Kim Y., Seo H., Chun J. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017;67(5):1613-1617. DOI 10.1099/ijsem.0.001755.
38. Zenova G.M., Dubrova M.S., Gracheva T.A., Kuznetsova A.I., Stepanova O.A., Chernov I.Yu., Manucharov A.S. Ecological and taxonomic features of soil actinomycete complexes in the Near-Elton region. Vestnik Moskovskogo Universiteta. Ser. 17. Pochvovedenie = Herald of the Moscow University. Series 17: Soil Science. 2016;4:43-46. (in Russian)
39. Zenova G.M., Kozhevin P.A., Manucharova N.A., Lubsanova D.A., Dubrova M.S. Ecophysiological features of actinomycetes in desert soils in Mongolia. Izvestiya RAN. Ser. Biol. = Proceedings of the Russian Academy of Sciences. Biological Series. 2014;3:246-253. (in Russian)
40. Zenova G.M., Kurapova A.I., Zvyagintsev D.G., Lysenko A.M. The structural-functional organization of thermotolerant complexes of actinomycetes in desert and volcanic soils. Eurasian Soil Sci. 2009;42(5):531-535.
41. Zenova G.M., Zvyagintsev D.G. The Diversity of Actinomycetes in Land Ecosystems. Moscow, 2002. (in Russian)
42. Zhou S.Q., Huang X.L., Huang D.Y., Hu X. W., Chen J.L. A rapid method for extracting DNA from actinomycetes by Chelex-100. Biotechnol. Bull. 2010;2:123-125.
43. Zvyagincev D.G., Bab’eva I.P., Zenova G.M. Soil Biology. Moscow, 2005. (in Russian)
44. Zvyagintsev D.G., Dobrovolskaya T.G., Chernov I.Yu., Sardanashvili E.S., Gonchikov G.G., Korsunov V.M. The peculiarities of taxonomic composition of microbial complexes in soils of Baikal Region. Eurasian Soil Sci. 1999;6:732-737.