Identification of new nucleotide sequences of the Glu-B1-1 gene encoding x-type glutenins in bread wheat
https://doi.org/10.18699/VJGB-23-52
Abstract
Studies of the genetic base and polymorphism of bread wheat cultivars aimed at identifying alleles of genes associated with high baking and other economically valuable traits seem to be relevant, since bread wheat, along with all representatives of the Triticeae tribe, has a huge genetic potential for creating cultivars with high technological and rheological properties of grain flour. The aim of this study was sequencing and analysis of the nucleotide sequences of the Glu-B1-1 gene, and analysis of the predicted amino acid sequences of its protein product in three cultivars of bread wheat. Thus, in the course of genotyping cultivars and lines of bread wheat for the Glu-B1-1 gene, in the cultivars ‘Avesta’, ‘Leningradka krupnozernaya’ and line C-75094, previously undescribed changes in the size of amplifiable regions of the Glu-B1-1 gene for high-molecular-weight glutenins were found. Comparative analysis of the nucleotide sequences of these genes with known sequences showed the presence of two deletions in ‘Avesta’ and C-75094 and the presence of seven single-nucleotide substitutions in ‘Leningradka krupnozernaya’. Alignment of the predicted Glu-B1 amino acid sequences of the studied accessions and the standard cultivar carrying the Glu-B1-a allele showed that deletions in the amino acid sequences of ‘Avesta’ and C-75094 accessions are localized in the central domain of the protein and affect the amount of tri-, hexa-, and nonapeptides, and in ‘Leningradka krupnozernaya’, a decrease in GQQ and PGQGQQ by one unit was revealed. In addition, substitutions of five amino acids were found in ‘Leningradka krupnozernaya’. Thus, we have found previously undescribed deletions and substitutions in the nucleotide sequences of the Glu-B1-1 gene for high-molecular-weight glutenins, which lead to changes in amino acid sequences in functionally important regions, namely, in the central domains of protein molecules. The identified mutations can be used for genotyping bread wheat cultivars.
About the Authors
A. A. GalimovaRussian Federation
Ufa; St. Petersburg
B. R. Kuluev
Russian Federation
Ufa; St. Petersburg
References
1. Anderson O.D., Greene F.C. The characterization and comparative analysis of high-molecular-weight glutenin genes from genomes A and B of a hexaploid bread wheat. Theor. Appl. Genet. 1989;77:689-700. DOI: 10.1007/BF00261246.
2. Belton P.S. A hypothesis concerning the elasticity of high molecular weight subunits. In: Wheat Kernel Proteins: Molecular and Functional Aspects. Proceedings of the International Meeting, S. Martino Al Cimino, Viterbo (Italy), September 28–30, 1994. Viterbo: Università degli studi della Tuscia, 1994;159-165.
3. Belton P.S. Mini review: on the elasticity of wheat gluten. J. Cereal Sci. 1999;29(2):103-107. DOI: 10.1006/jcrs.1998.0227.
4. Belton P.S., Colquhoun I.J., Grant A., Wellner N., Field J.M., Shewry P.R., Tatham A.S. FTIR and NMR studies on the hydration of a high-Mr subunit of glutenin. Int. J. Biol. Macromol. 1995;17(2):74-80. DOI: 10.1016/0141-8130(95)93520-8.
5. D’Ovidio R., Masci S., Porceddu E. Development of a set of oligonucleotide primers specific for genes at the Glu-1 complex loci of wheat. Theor. Appl. Genet. 1995;91:189-194. DOI: 10.1007/BF00220876.
6. Doyle J.J., Doyle J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987;19(1): 11-15.
7. Galimova A.A., Kuluev A.R., Ismagilov K.R., Kuluev B.R. Genetic polymorphism of high-molecular-weight glutenin subunit loci in bread wheat varieties in the Pre-Ural steppe zone. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2023;27(4):297-305. DOI: 10.18699/VJGB-23-36.
8. Gianibelli M.C., Larroque O.R., MacRitchie F., Wrigley C.W. Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal Chem. 2001;78(6):635-646. DOI: 10.1094/CCHEM.2001.78.6.635.
9. Guo H., Wu J., Lu Y., Yan Y. High-molecular-weight glutenin 1Bx17 and 1By18 subunits encoded by Glu-B1i enhance rheological properties and bread-making quality of wheat dough. J. Food Qual. 2019;2019:1958747. DOI:10.1155/2019/1958747.
10. Halford N.G., Field J.M., Blair H., Urwin P., Moore K., Robert L., Thompson R., Flavell R.B., Tatham A.S., Shewry P.R. Analysis of HMW glutenin subunits encoded by chromosome 1A of bread wheat (Triticum aestivum L.) indicates quantitative effects on grain quality. Theor. Appl. Genet. 1992;83:373-378. DOI: 10.1007/BF00224285.
11. Kohler P., Keck B., Muller S., Wieser H. Disulphide bonds in wheat gluten. In: Wheat Kernel Proteins: Molecular and Functional Aspects. Proceedings of the International Meeting, S. Martino Al Cimino, Viterbo (Italy), September 28–30, 1994. Viterbo: Università degli studi della Tuscia, 1994;45-54.
12. Li X.J., Liu T.H., Song L.J., Zhang H., Li L.Q., Gao X. Influence of high-molecular-weight glutenin subunit composition at Glu-A1 and Glu-D1 loci on secondary and micro structures of gluten in wheat (Triticum aestivum L.). Food Chem. 2016;213:728-734. DOI: 10.1016/j.foodchem.2016.07.043.
13. Lindsay M.P., Tamas L., Appels R., Skerritt J.H. Direct evidence that the number and location of cysteine residues affect glutenin polymer structure. J. Cereal Sci. 2000;31(3):321-333. DOI: 10.1006/jcrs.2000.0309.
14. Ma W., Zhang W., Gale K. Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica. 2003;134:51-60. DOI: 10.1023/A:1026191918704.
15. McIntosh R.A., Yamazaki Y., Dubcovsky J., Rogers W.J., Morris C., Appels R., Xia X.C. In: Catalogue of Gene Symbols for Wheat. Proceed. of the 12th International Wheat Genetics Symposium. Yokohama, 2013;84-95.
16. Nucia A., Okoń S., Tomczyńska-Mleko M. Characterization of HMW glutenin subunits in European spring common wheat (Triticum aestivum L.). Genet. Resour. Crop Evol. 2019;66:579-588. DOI: 10.1007/s10722-018-00733-x.
17. Patil V.R., Talati J.G., Singh C., Parekh V.B., Jadeja G.C. Genetic variation in glutenin protein composition of aestivum and durum wheat cultivars and its relationship with dough quality. Int. J. Food Properties. 2015;18(9-12):2393-2408. DOI: 10.1080/10942912.2014.980948.
18. Payne P.I. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Ann. Rev. Plant Physiol. 1987;38:141-153. DOI: 10.1146/annurev.pp.38.060187.001041.
19. Ravel C., Faye A., Ben-Sadoun S., Ranoux M., Dardevet M., Dupuits C., Exbrayat F., Poncet Ch., Sourdille P., Branlard G. SNP markers for early identification of high molecular weight glutenin subunits (HMW-GSs) in bread wheat. Theor. Appl. Genet. 2020;133(3):751-770. DOI: 10.1007/s00122-019-03505-y.
20. Shewry P.R., Halford N.G., Tatham A.S. The high molecular weight subunits of wheat, barley and rye: genetics, molecular biology, chemistry and role in wheat gluten structure and functionality. In: Miflin B.J. (Ed.) Oxford Surveys of Plant and Molecular Cell Biology. London: Oxford Univ. Press, 1989;163-219.
21. Shewry P.R., Halford N.G., Tatham A.S. High molecular weight subunits of wheat glutenin. J. Cereal Sci. 1992;15(2):105-120. DOI: 10.1016/s0733-5210(09)80062-3.
22. Shewry P.R., Tatham A.S., Barro F., Barcelo P., Lazzeri P. Biotechnology of breadmaking: unravelling and manipulating the multiprotein gluten complex. BioTechnology. 1995;13:1185-1190. DOI: 10.1038/nbt1195-1185.
23. Shewry P.R., Tatham A.S., Lazzeri P. Biotechnology of wheat quality. J. Sci. Food Agric. 1997;73(4):397-406. DOI: 10.1002/(SICI)1097-0010(199704)73:4<397::AID-JSFA758>3.0.CO;2-Q.
24. Tatham A.S., Drake A.F., Shewry P.R. Conformational studies of synthetic peptides corresponding to the repetitive region of the high molecular weight (HMW) glutenin subunits of wheat. J. Cereal Sci. 1990;11(3):189-200. DOI: 10.1016/S0733-5210(09)80163-X.
25. Vafin R., Rzhanova I., Askhadullin D., Askhadullin D., Vasilova N. Screening of the genotypes of bread wheat (Triticum aestivum L.) by the allelic variants of Waxy genes and HMW glutenin subunits. Acta Agrobot. 2018;71(4):1746. DOI: 10.5586/aa.1746.
26. Wang L., Yu J.J., Wang C.C. Protein disulfide isomerase is regulated in multiple ways: consequences for conformation, activities, and pathophysiological functions. BioEssays. 2021;43(3):2000147. DOI: 10.1002/bies.202000147.