Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Identification of homozygosity-rich regions in the Holstein genome

https://doi.org/10.18699/VJGB-23-57

Abstract

In this study, 371 Holstein cows from six herds and 26 Holstein bulls, which were used in these herds, were genotyped by the Illumina BovineSNP50 array. For runs of homozygosity (ROH) identification, consecutive and sliding runs were performed by the detectRUNS and Plink software. The missing calls did not significantly affect the ROH data. The mean number of ROH identified by consecutive runs was 95.4 ± 2.7, and that by sliding runs was 86.0 ± 2.6 in cows, while this number for Holstein bulls was lower 58.9 ± 1.9. The length of the ROH segments varied from 1 Mb to over 16 Mb, with the largest number of ROH having a length of 1–2 Mb. Of the 29 chromosomes, BTA 14, BTA 16, and BTA 7 were the most covered by ROH. The mean coefficient of inbreeding across the herds was 0.111 ± 0.003 and 0.104 ± 0.004 based on consecutive and sliding runs, respectively, and 0.078 ± 0.005 for bulls based on consecutive runs. These values do not exceed those for Holstein cattle in North America. The results of this study confirmed the more accurate identification of ROH by consecutive runs, and also that the number of allowed heterozygous SNPs may have a significant effect on ROH data.

About the Author

M. G. Smaragdov
Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the L.K. Ernst Federal Science Center for Animal Husbandry
Russian Federation

St. Petersburg, Pushkin



References

1. Addo S., Klingel S., Hinrichs D., Thaller G. Runs of homozygosity and NetView analyses provide new insigt into the genome-wide diversity and admixture of three German cattle breeds. PLoS One. 2019;14(12):e0225847. DOI: 10.1371/journal.pone.0225847.

2. Bhati M., Kadri N., Crysnanto D., Pausch H. Assesing genomic diversity and signatures of selection in Original Braunvich cattle using whole-genome sequencing data. BMC Genomics. 2020;21(1):27. DOI: 10.1186/s12864-020-6446-y.

3. Biscarini F., Cozzi P., Gaspa G., Marras G. detectRUNS: detect runs of homozygosity and runs of heterozygosity in diploid genomes. R package version 0.9.5. 2018.

4. Bjelland D., Weigel K., Vukasinovic N., Nkrumah J. Evaluation of inbreeding depression in Holstein cattle using whole-genome SNP markers and alternative measures of genomic inbreeding. J. Dairy Sci. 2013;96(7):4697-4706. DOI: 10.3168/jds.2012-6435.

5. Browning S., Browning B. High-resolution detection of identity by descent in unrelated individuals. Am. J. Hum. Genet. 2010;86(4): 526-539. DOI: 10.1016/j.ajhg.2010.02.021.

6. Ceballos F., Hazelhurst S., Ramsay M. Assessing runs of Homozygosity: a comparison of SNP array and whole genome sequence low coverage data. BMC Genomics. 2018a;19(1):106. DOI: 10.1186/s12864-018-4489-0.

7. Ceballos F., Joshi P., Clark D., Ramsay M., Wilson J. Runs of homozygosity: windows into population history and trait architecture. Nat. Rev. Genet. 2018b;19(4):220-234. DOI: 10.1038/nrg.2017.109.

8. Ferencakovic M., Hamzic E., Gredler B., Curik I., Johann S. Runs of homozygosity reveal genome-wide autozygosity in the Austrian Fleckvieh cattle. Agric. Conspec. Sci. 2011;76(4):325-329.

9. Ferenčaković M., Sölkner J., Curik I. Estimating autozygosity from high-throughput information: effects of SNP density and genotyping errors. Genet. Sel. Evol. 2013;45:42.

10. Forutan M., Mahyari S., Baes C., Melzer N., Schenkel F., Sargolzaei M. Inbreeding and runs of homozygosity before and after genomic selection in North American Holstein cattle. BMC Genomics. 2018;19(1):98. DOI: 10.1186/s12864-018-4453-z.

11. Goszczynski D., Molina A., Tera E., Morales-Durand H., Ross P., Cheng H., Giovambattista G., Demyda-Peyrás S. Runs of homozygosity in a selected cattle population with extremely inbred bulls: descriptive and functional analyses revealed highly variable patterns. PLoS One. 2018;13(7):e0200069. DOI: 10.1371/journal.pone.0200069.

12. Gusev A., Lowe J., Stoffel M., Daly M., Altshuler D., Breslow J., Friedman J., Peer I. Whole population, genome-wide mapping of hidden relatedness. Genome Res. 2009;19(2):18-26. DOI: 10.1101/gr.081398.108.

13. Howard J., Maltecca C., Haile-Mariam M., Hayes B., Pryce J. Characterizing homozygosity across United States, New Zealand and Australian Jersey cow and bull populations. BMC Genomics. 2015; 16(1):187. DOI: 10.1186/s12864-015-1352-4.

14. Howrigan D., Simonson M., Keller M. Detecting autozygosity through runs of homozygosity: a comparison of three autozygosity detection algorithms. BMC Genomics. 2011;12:460. DOI: 10.1186/1471-2164-12-460.

15. Karimi Z. Runs of homozygosity patterns in taurine and indicine cattle breeds. Doctoral thesis. Vienna: Univ. of Natural Resources and Life Sciences, 2013.

16. Kim E., Cole J., Huson H., Wiggans G., Van Tassel C., Crooker B., Liu G., Da Y., Sonstegard T. Effect of artificial selection on runs of homozygosity in U.S. Holstein cattle. PLoS One. 2013;8(11):e80813. DOI: 10.1371/journal.pone.0080813.

17. Kim E., Sonstegard T., Van Tassell C., Wiggans G., Rothschild M. The relationship between runs of homozygosity and inbreeding in Jersey cattle under selection. PLoS One. 2015;10(7):e0129967. DOI: 10.1371/journal.pone.0129967.

18. Kudinov A., Mäntysaari E., Pitkänen T., Saksa E., Aamand G., Uimari P., Strandén I. Single-step genomic evaluation of Russian dairy cattle using internal and external information. J. Anim. Breed. Genet. 2022;139(3):259-270. DOI: 10.1111/jbg.12660.

19. Luan T., Yu X., Dolezal M., Bagnato A., Meuwissen T.H. Genomic prediction based on runs of homozygosity. Genet. Sel. Evol. 2014; 46(1):64. DOI: 10.1186/s12711-014-0064-6.

20. Marras G., Gaspa G., Sorbolini S., Dimauro C., Ajmone-Marsan P., Valentini A., Williams J., Macciotta N. Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy. Anim. Genet. 2014;46(2):110-121. DOI: 10.1111/age.12259.

21. Mastrangelo S., Tolone M., Di Gerlando R., Fontanesi L., Sardina M., Portolano B. Genomic inbreeding estimation in small populations: evaluation of runs of homozygosity in three local dairy cattle breeds. Animal. 2016;10(5):746-754. DOI: 10.1017/S1751731115002943.

22. Matukumalli L., Cynthia T., Lawley C., Robert D., Schnabel R., Taylor J., Allan M., Heaton M., O’Connell J., Moore S., Smith T., Sonstegard T., Van Tassell C. Development and characterization of a high density SNP genotyping assay for cattle. PLoS One. 2009;4(4): e5350. DOI: 10.1371/journal.pone.0005350.

23. McKay S.D., Schnabel R.D., Murdoch B.M., Matukumalli L.K., Aerts J., Coppieters W., Crews D., Dias Neto E., Gill C.A., Gao C., Mannen H., Stothard P., Wang Z., Van Tassell C.P., Williams J.L., Taylor J.F., Moore S.S. Whole genome linkage disequilibrium maps in cattle. BMC Genetics. 2007;8:74. DOI: 10.1186/1471-2156-8-74.

24. Meuwissen T., Luo Z. Computing inbreeding coefficient in large populations. Genet. Sel. Evol. 1992;24(4):305-313. DOI: 10.1186/1297-9686-24-4-305.

25. Mulim H., Brito L., Pinto L., Ferraz J., Grigoletto L., Silva M., Pedrosa V. Characterization of runs of homozygosity – enriched regions, and population structure in cattle populations selected for different breeding goals. BMC Genomics. 2022;23(1):209. DOI: 10.1186/s12864-022-08384-0.

26. Narasimhan V., Danecek P., Scally A., Xue Y., Tyler-Smith C., Durbin R. BCFtools/ROH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics. 2016;32(11):1749-1751. DOI: 10.1093/bioinformatics/btw044.

27. Nothnagel M., Lu T., Kayser M., Krawczak M. Genomic and geographic distribution of SNP-defined runs of homozygosity in Europeans. Hum. Mol. Genet. 2010;19(15):2927-2935. DOI: 10.1093/hmg/ddq198.

28. Pemberton T., Absher D., Feldman M., Myers R., Rosenberg N., Li J. Genomic: patterns of homozygosity in worldwide human populations. Am. J. Hum. Genet. 2012;91(2):275-292. DOI: 10.1016/j.ajhg.2012.06.014.

29. Peripolli E., Munari D., Silva M., Lima A., Irgang R., Baldi F. Runs of homozygosity: current knowledge and applications in livestock. Anim. Genet. 2016;48(3):255-271. DOI: 10.1111/age.12526.

30. Peripolli E., Metzger J., de Lemos M.V.A., Stafuzza N.B., Kluska S., Olivieri B.F., Feitosa F.L.B., Berton M.P., Lopes F.B., Munari D.P., Lôbo R.B., Magnabosco C.U., Di Croce F., Osterstock J., Denise S., Pereira A.S.C., Baldi F. Autozygosity islands and ROH patterns in Nellore lineages: evidence of selection for functionally important traits. BMC Genomics. 2018a;19(1):680. DOI: 10.1186/s12864-018-5060-8.

31. Peripolli E., Stafuzza N.B., Munari D.P., Lima A.L.F., Irgang R., Machado M.A., Panetto J.C.D.C., Ventura R.V., Baldi F., da Silva M.V.G.B. Assessment of runs of homozygosity islands and estimates of genomic inbreeding in Gyr (Bos indicus) dairy cattle. BMC Genomics. 2018b;19(1):34. DOI: 10.1186/s12864-017-4365-3.

32. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A., Bender D., Maller J., Sklar P., de Bakker P.I., Daly M.J., Sham P.C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007;81(3):559-575. DOI: 10.1086/519795.

33. Purfield D., Berry D., McParland S., Bradley D. Runs of homozygosity and population history in cattle. BMC Genetics. 2012;13:70. DOI: 10.1186/1471-2156-13-70.

34. Smaragdov M., Kudinov A. Assessing the power of principal components and wright’s fixation index analyzes applied to reveal the genomewide genetic differences between herds of Holstein cows. BMC Genetics. 2020;21:47. DOI: 10.1186/s12863-020-00848-0.

35. Smaragdov M., Kudinov A., Uimari P. Assessing the genetic differentiation of Holstein cattle herds in the Leningrad region using Fst statistics. Agric. Food Sci. 2018;27(2):96-101. DOI: 10.23986/afsci. 69777.

36. Sölkner J., Ferenčaković M., Karimi Z., Pérez O’Brien A.M., Mészáros G., Eaglen S., Boison S., Curik I. Extremely non-uniform: patterns of runs of homozygosity in bovine populations. In: Proceedings of the 10th World Congress on Genetics Applied to Livestock Production (August 17–22, 2014, Vancouver, BC Canada). 2014.

37. Szmatoła T., Gurgul A., Jasielczuk I., Zabek T., Ropka-Molik K., Litwinczuk Z., Bugno-Poniewierska M. Comprehensive analysis of runs of homozygosity of eleven cattle breeds representing different production types. Animals. 2019;9(12):1024. DOI: 10.3390/ani9121024.

38. Zavarez L.B., Utsunomiya Y.T., Carmo A.S., Neves H.H., Carvalheiro R., Ferenčaković M., Pérez O’Brien A.M., Curik I., Cole J.B., Van Tassell C.P., da Silva M.V., Sonstegard T.S., Sölkner J., Garcia J.F. Assessment of autozygosity in Nellore cows (Bos indicus) through high density SNP genotypes. Front. Genet. 2015;6:5. DOI: 10.3389/fgene.2015.00005.

39. Zhang L., Orloff M., Reber S., Li S., Zhao Y., Eng C. cgaTOH: extended approach for identifying tracts of homozygosity. PLoS One. 2013;8:e57772. DOI: 10.1371/journal.pone.0057772.

40. Zhang Q., Calus M., Guldbrandtsen B., Lund M., Sahana G. Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds. BMC Genetics. 2015a;16:88. DOI: 10.1186/s12863-015-0227-7.

41. Zhang Q., Guldbrandtsen B., Bosse M., Lund M., Sahana G. Runs of homozygosity and distribution of functional variants in the cattle genome. BMC Genomics. 2015b;16:542. DOI: 10.1186/s12864-015-1715-x.

42. Zinovieva N., Dotsev A., Sermyagin A., Deniskova T., Abdelmanova A., Kharzinova V., Solkner J., Reyer H., Wimmers K., Brem G. Selection signatures in two oldest Russian native cattle breeds revealed using high density single nucleotide polymorphism analysis. PLoS One. 2020;15:e0242200. DOI: 10.1371/journal.pone.0242200.


Review

Views: 427


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)