Differentiation of Bos grunniens and Bos taurus based on STR locus polymorphism
https://doi.org/10.18699/VJGB-23-59
Abstract
Differentiation of closely related biological species using molecular genetic analysis is important for breeding farm animals, creating hybrid lines, maintaining the genetic purity of breeds, lines and layering. Bos grunniens and Bos taurus differentiation based on STR locus polymorphism will help maintain the genetic isolation of these species and identify hybrid individuals. The aim of this study is to assess the differentiating potential of 15 microsatellite loci to distinguish between domestic yak (B. grunniens) bred in the Kalmak-Ashuu highland region (Kochkor district, Naryn region, Kyrgyz Republic) and cattle (B. taurus) of three breeds (Aberdeen-Angus, Holstein and Alatau) using molecular genetic analysis. The samples were genotyped at 15 microsatellite loci (ETH3, INRA023, TGLA227, TGLA126, TGLA122, SPS115, ETH225, TGLA53, BM2113, BM1824, ETH10, BM1818, CSSM66, ILSTS006 and CSRM60). Twelve of the loci were from the standard markers panel recommended by ISAG. Statistical analysis was performed using GenAlEx v.6.503, Structure v.2.3.4, PAST v.4.03, and POPHELPER v1.0.10. The analysis of the samples’ subpopulation structure using the Structure v.2.3.4 and 15 STR locus genotyping showed that the accuracy of assigning a sample to B. taurus was 99.6 ± 0.4 %, whereas the accuracy of assigning a sample to B. grunniens was 99.2 ± 2.6 %. Of the 15 STRs, the greatest potential to differentiate B. grunniens and B. taurus was found in those with the maximal calculated FST values, including BM1818 (0.056), BM1824 (0.041), BM2113 (0.030), CSSM66 (0.034) and ILSTS006 (0.063). The classification accuracy of B. grunniens using only these five microsatellite loci was 98.8 ± 3.4 %, similar for B. taurus, 99.1 ± 1.2 %. The proposed approach, based on the molecular genetic analysis of 5 STR loci, can be used as an express test in Kyrgyzstan breeding and reproduction programs for B. grunniens.
Keywords
About the Authors
K. B. ChekirovKyrgyzstan
Bishkek
Zh. T. Isakova
Kyrgyzstan
Bishkek
V. N. Kipen
Belarus
Minsk
M. I. Irsaliev
Kyrgyzstan
Bishkek
S. B. Mukeeva
Kyrgyzstan
Bishkek
K. A. Aitbaev
Kyrgyzstan
Bishkek
G. A. Sharshenalieva
Kyrgyzstan
Bishkek
S. B. Beyshenalieva
Kyrgyzstan
Bishkek
B. U. Kydyralieva
Kyrgyzstan
Bishkek
References
1. Abdykerimov A. Theory and Practice of Raising Yaks in Kyrgyzstan. Bishkek, 2001. (in Russian)
2. Al-Kaisy T.V. Comparative study of the allele pool of yaks and their hybrids with cattle using microsatellites. Cand. Biol. Sci. Diss. Dubrovitsy, 2011. (in Russian)
3. Barendse W., Armitage S.M., Kossarek L.M., Shalom A., Kirkpatrick B.W., Ryan A.M., Clayton D., Li L., Neibergs H.L., Zhang N., Grosse W.M., Weiss J., Creighton P., McCarthy F., Ron M., Teale A.J., Fries R., McGraw R.A., Moore S.S., Georges M., Soller M., Womack J.E., Hetzel D.J.S. A genetic linkage map of the bovine genome. Nat. Genet. 1994;6(3):227-235. DOI: 10.1038/ng0394-227.
4. Bishop M.D., Kappes S.M., Keele J.W., Stone R.T., Sunden S.L.F., Hawkins G.A., Toldo S.S., Fries R., Grosz M.D., Yoo J., Beattie C.W. A genetic linkage map for cattle. Genetics. 1994;136(2):619-639. DOI: 10.1093/genetics/136.2.619.
5. Bovine Genome Project. Baylor College of Medicine Human Genome Sequencing Center. Genome Bovine Whole Genome Assembly release Btau_3.1. URL: http://www.hgsc.bcm.tmc.edu/projects/bovine/ (Application 25.07.2022).
6. Brezinsky L., Kemp S.J., Teale A.J. ILSTS006: a polymorphic bovine microsatellite. Anim. Genet. 1993;24(1):73. DOI: 10.1111/j.1365-2052.1993.tb00933.x.
7. Chertkiev Sh.Ch., Chortonbaev T.J. Scientific Basis for the Formation of Meat Productivity of Yaks in Ontogeny. Bishkek, 2007. (in Russian)
8. Francis R.M. POPHELPER: an R package and web app to analyse and visualise population structure. Mol. Ecol. Resour. 2016;17(1):27-32. DOI: 10.1111/1755-0998.12509.
9. Georges M., Massey J. Polymorphic DNA markers in Bovidae. Patent application WO PUBL NO 92/13102. World Intellectual Property Organization. Geneva, 1992.
10. Hammer Ø., Harper D.A.T., Ryan P.D. Past: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001;4(1):4.
11. Jacques G., d’Alpoim Guedes J., Zhang S. Yak domestication: a review of linguistic, archaeological, and genetic evidence. Ethnobiol. Lett. 2021;12(1):103-114. DOI: 10.14237/ebl.12.1.2021.1755.
12. Luz Ya.Ya. (Ed.) Domestic Animals of Mongolia. Proceedings of the livestock detachment of the Mongolian expedition of the Academy of Sciences of the USSR in 1931. Moscow–Leningrad: Publishing House of the USSR Academy of Sciences, 1936. (in Russian)
13. Nosova A.Yu., Kipen V.N., Tsar A.I., Lemesh V.A. Differentiation of hybrid progeny of silver carp (Hypophthalmichthys molitrix Val.) and bighead carp (H. nobilis Rich.) based on microsatellite polymorphism. Russ. J. Genet. 2020;56(3):317-323. DOI: 10.1134/S1022795420030126.
14. Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics. 2012;28(19):2537-2539. DOI: 10.1093/bioinformatics/bts460.
15. Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945-959. DOI: 10.1093/genetics/155.2.945.
16. Rębała K., Rabtsava A.A., Kotova S.A., Kipen V.N., Zhurina N.V., Gandzha A.I., Tsybovsky I.S. STR profiling for discrimination between wild and domestic swine specimens and between main breeds of domestic pigs reared in Belarus. PLoS One. 2016;11(11): e0166563. DOI: 10.1371/journal.pone.0166563.
17. Sambrook J., Russell D.W. Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, 2001.
18. Steffen P., Eggen A., Dietz A.B., Womack J.E., Stranzinger G., Fries R. Isolation and mapping of polymorphic microsatellites in cattle. Anim. Genet. 1993;24(2):121-124. DOI: 10.1111/j.1365-2052.1993.tb00252.x.
19. Stolpovsky Yu.A., Kol N.V., Evsyukov A.N., Nesteruk L.V., Dorzhu Ch.M., Tsendsuren Ts., Sulimova G.E. Comparative analysis of ISSR marker polymorphism in population of yak (Bos mutus) and in F1 hybrids between yak and cattle in the Sayan-Altai region. Russ. J. Genet. 2014;50(10):1163-1176. DOI: 10.1134/S1022795414100135.
20. Toldo S., Fries R., Steffen P., Neibergs H.L., Barendse W., Womack J.E., Hetzel D.J., Stranzinger G. Physically mapped, cosmid-derived microsatellite markers as anchor loci on bovine chromosomes. Mamm. Genome. 1993;4(12):720-727. DOI: 10.1007/BF00357796.
21. Vaiman D., Mercier D., Moazami-Goudarzi K., Eggen A., Ciampolini R., Lepingle A., Velmala R., Kaukinen J., Varvio S.L., Martin P., Leveziel H., Guerin G. A set of 99 cattle microsatellites: characterization, synteny mapping, and polymorphism. Mamm. Genome. 1994;5(5):288-297. DOI: 10.1007/BF00389543.