ГЕНЫ, ДЕТЕРМИНИРУЮЩИЕ ОКРАСКУ РАЗЛИЧНЫХ ОРГАНОВ ПШЕНИЦЫ
Аннотация
Окраска некоторых органов пшеницы имеет адаптивное значение. Признаки окраски широко используются в таксономии и для паспортизации сортов пшеницы, а также являются удобной моделью для генетических и молекулярно-генетических исследований. В обзоре представлены данные по хромосомной локализации, генетическому картированию и структурно-функциональной организации всех известных генов, определяющих окраску у пшеницы. К настоящему времени определена локализация около 30 генов пшеницы, детерминирующих окраску различных органов. Данные гены представлены главным образом гомеологичными локусами в геномах А, В и D, большинство из которых расположены в ген-богатых районах 1S0.8 и 7S0.4 генома пшеницы. Сравнительное картирование у разных видов злаков указывает на то, что ортологичные гены, контролирующие окраску, могут как встречаться у отдельных представителей (гомеологичный ряд генов Rg выявлен только у пшениц и эгилопсов , R – у пшениц, эгилопсов и ржи), так и быть широко представленными во всем семействе злаков (гены, определяющие фенотип по признакам антоциановой окраски). Данные по сравнительному картированию в сочетании с результатами последних работ, направленных на клонирование и исследование функции генов, детерминирующих окраску органов пшеницы, дают основание считать, что эти гены относятся к семействам Myb- и Myc-подобных генов, кодирующих активаторы транскрипции структурных генов биосинтеза флавоноидных пигментов у растений.
Об авторе
Е. К. ХлесткинаРоссия
Список литературы
1. Алиев Э.Б., Мусаев А.Д. Идентификация гена Rg1, контролирующего окраску колоса у ярового сорта мягкой пшеницы Диамант 2 // Изв. СО АН СССР. 1981. № 10. C. 87–92.
2. Богданова Е.Д., Сарбаев А.Т., Махмудова К.Х. Устойчивость пшеницы к твердой головне // Матер. науч. генет. конф. Москва, 26–27 февраля 2002. М., 2002. C. 43–44.
3. Вавилов Н.И. Научные основы селекции пшеницы. М.; Л.: Сельхозгиз, 1935. C. 70–87.
4. Ваценко А.А. Наследование опушения чешуй и черной окраски колоса у твердых пшениц Triticum durum Desf. // Докл. АН СССР. 1934. T. 4. C. 338–342.
5. Гуляева З.Б. Локализация генов, контролирующих опушение колосковых чешуй и окраску ушек листового влагалища у озимого сорта Ульяновка // Тр. прикл. ботан. генет. селекции. Л., 1984. T. 85. C. 95–96.
6. Елохина Л.П. Генетический контроль окраски колоса мягкой яровой пшеницы Мильтурум 553 // Роль науки в интенсификации сельского хозяйства: Сб. тр. конф. Ч. 1. Омск, 20–21 апреля 1989. Новосибирск, 1990. С. 13–14.
7. Коваль С.Ф. Каталог изогенных линий яровой мягкой пшеницы Новосибирская 67 и принципы их использования в эксперименте // Генетика. 1997. T. 33. C. 1168–1173.
8. Кудрявцев А.М., Попова Т.А. Генетическое сцепление между глиадинкодирующими генами и генами окраски и опушения колоса у яровой твердой пшеницы (Triticum durum Desf.) // Генетика. 1994. T. 30. C. 1587–1592.
9. Лайкова Л.И., Арбузова В.С., Ефремова Т.Т., Попова О.М. Генетический анализ окраски стебля и пыльников у растений мягкой пшеницы // Генетика. 2005. T. 41. C. 1428–1433.
10. Майстренко О.И. Использование цитогенетических методов в исследовании онтогенеза мягкой пшеницы // Онтогенетика высших растений: Сб. тр. конф. Кишинев: Штиинца, 1992. C. 98–113.
11. Мартынов С.П., Добротворская Т.В. Особенности распространения морфологических признаков колоса мягкой пшеницы на территории бывшего СССР // Генетика. 1997. T. 33. C. 350–357.
12. Панин В.М., Нецветаев В.П. Генетический контроль глиадина и некоторых форм морфологических признаков колоса у твердой озимой пшеницы // Науч.-техн. бюл. ВСГИ (Одесса). 1986. № 2. C. 31–36.
13. Пухальский В.А. Число генов окраски зерна у сортов яровой мягкой пшеницы (Triticum aestivum L.) // Генетика. 1984. Т. 20. С. 457–461.
14. Пшеничникова Т.А., Бокарев И.Е., Щукина Л.В. Гибридологический и моносомный анализ признака дымчатой окраски колоса у мягкой пшеницы // Генетика. 2005. T. 41. C. 1147–1149.
15. Синская Е. О полевых культурах Алтая (краткий отчет о поездке летом 1924 г.) // Тр. прикл. ботан. селекции. 1925. T. 14. C. 359–376.
16. Собко Т.А., Созинов А.А. Генетический контроль морфологических признаков колоса и взаимосвязь аллельной изменчивости маркерных локусов хромосом 1А и 1B озимой мягкой пшеницы // Цитология и генетика. 1993. T. 27. C. 15–22.
17. Собко Т.А., Созинов А.А. Картирование локусов, контролирующих морфологические признаки колоса и запасные белки зерна, в хромосоме 1А озимой мягкой пшеницы // Цитология и генетика. 1997. T. 31. C. 18–26.
18. Филипченко Ю.А. Генетика мягких пшениц. М.; Л.: Сельхозгиз, 1934. 262 c.
19. Хлесткина E.K., Салина E.A., Пшеничникова T.A. и др. Анализ изогенных линий мягкой пшеницы, несущих доминантные аллели генов Bg, Hg и Rg1, с помощью микросателлитных и белковых маркеров // Генетика. 2000. T. 36. C. 1374–1379.
20. Хлесткина Е.К. Геномная локализация и структурно-функциональные особенности генов биосинтеза флавоноидов пшеницы и ее сородичей: Дис. … д-ра биол. наук. Новосибирск: ИЦиГ СО РАН, 2011. 325 с.
21. Шрайбер Л.Л. Антоцианы // Пшеницы Абиссинии и их положение в общей системе пшениц (К познанию 28-хромосомной группы культурных пшениц) / Ред. Н.И. Вавилов. Л.: ВИР, 1931. С. 16–17.
22. Якубцинер М.М., Савицкий М.С. Зерновые культуры // Руководство по апробации сельскохозяйственных культур. М.: Сельхозгиз, 1947. С. 20.
23. Adhikari T.B., Cavaletto J., Dubcovsky J. et al. Molecular mapping of the Stb4 gene for resistance to septoria tritici blotch in wheat // Phytopathology. 2004. V. 94. P. 1198–1206.
24. Ahn S., Tanksley S.D. Comparative linkage maps of the rice and maize genomes // Proc. Natl Acad. Sci. USA. 1993. V. 90. P. 7980–7984.
25. Allan R.E., Vogel O.A. Monosomic analysis of red seed color in wheat // Crop Sci. 1965. V. 5. P. 474–475.
26. Arbuzova V.S., Maystrenko O.I., Popova O.M. Development of near-isogenic lines of the common wheat cultivar ‘Saratovskaya 29’ // Cereal Res. Commun. 1998. V. 26. P. 39–46.
27. Arraiano L.S., Worland A.J., Ellerbrook C., Brown J.K.M. Chromosomal location of a gene for resistance to septoria tritici blotch (Mycosphaerella graminicola) in the hexaploid wheat ‘Synthetic 6x’ // Theor. Appl. Genet. 2001. V. 103. P. 758–764.
28. Arzani A., Peng J.H., Lapitan N.L.V. DNA and morphological markers for a Russian wheat aphid resistance gene // Euphytica. 2004. V. 139. P. 167–172.
29. Ausemus E.R., Harrington Y.B., Worzella W.S., Reitz R.L. A summary of genetic studies in hexaploid and tetraploid wheats // J. Amer. Soc. Agron. 1946. V. 38. P. 1082–1099.
30. Biffen R.H. Mendel’s law of inheritance and wheat breeding // J. Agr. Sci. 1905. V. 1. P. 48.
31. Blanco A., Bellomo M.P., Cenci A. et al. A genetic linkage map of durum wheat // Theor. Appl. Genet. 1998. V. 97. P. 721–728.
32. Blanco A., Pasqualone A., Troccoli A. et al. Detection of grain protein content QTLs across environments in tetraploid wheats // Plant Mol. Biol. 2002. V. 48. P. 615–623.
33. Bolton F.E. Inheritance of blue aleurone and purple pericarp in hexaploid wheat // Plant Breed. Abstr. 1970. V. 40. P. 2684.
34. Börner A., Schumann E., Fьrste A. et al. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.) // Theor. Appl. Genet. 2002. V. 105. P. 921–936.
35. Burnham C.R. Discussions in Cytogenetics. Minneapolis: Burgess Publ. Co., 1962. 375 p.
36. Chao S., Sharp P.J., Worland A.J. et al. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes // Theor. Appl. Genet. 1989. V. 78. P. 495–504.
37. Chin K.-C. Le pigment pourpre dans le hybrides de bles europeens, africains et canadiens // C. r. Acad. Sci. Paris. 1944a. V. 219. P. 78–80.
38. Chin K.-C. Relations phylogenetiques entre Tr. vulgare et le Tr. monococcum d’apres le pigment pourpre // C.r. Acad. Sci. Paris. 1944b. V. 218. P. 975.
39. Churchward J.G. Studies on physiologic specialization of the organisms causing bunt in wheat, and the genetic resistance to this and certain others wheat diseases. Part II. Genetical studies // Roy. Soc. N. S. Wales J. 1938. V. 71. P. 547–590.
40. Clark J.A. Segregation and correlated inheritance in crosses between Kota and Hard Federation wheats for rust and drought resistance // J. Agric. Res. 1924. V. 29. P. 1047.
41. Cone K.C., Cocciolone S.M., Burr F.A., Burr B. Maize anthocyanin regulatory gene pl is a duplicate of c1 that functions in the plant // Plant Cell. 1993. V. 5. P. 1795–1805.
42. Darwin C. The Variation of Animals and Plants under Domestication. N.Y.: D. Appelton and Co, 1883. 495 p.
43. Davis G.L., McMullen M.D., Baysdorfer C. et al. A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map // Genetics. 1999. V. 152. P. 1137–72.
44. de Vries J.N., Sybenga J. Chromosomal location of 17 monogenically inherited morphological markers in rye (Secale cereale L.) using translocation tester set // Z. Pfl anzenzücht. 1984. V. 192. P. 117–139.
45. Devos K.M., Atkinson M.D., Chinoy C.N. et al. Chromosomal rearrangements in the rye genome relative to that of wheat // Theor. Appl. Genet. 1993. V. 85. P. 673–680.
46. Devos K.M., Chap S., Li Q.Y. et al. Relationship between chromosome 9 of maize and wheat homoeologous group 7 chromosomes // Genetics. 1994. V. 138. P. 1287–1292.
47. Dobrovolskaya O.B., Arbuzova V.S., Lohwasser U. et al. Microsatellite mapping of complementary genes for purple grain colour in bread wheat (Triticum aestivum L.) // Euphytica. 2006. V. 150. P. 355–364.
48. Dooner H.K., Kermicle J.L. Displaced and tandem duplications in the long arm of chromosome 10 in maize // Genetics. 1976. V. 82. P. 309–322.
49. Dubcovsky J., Luo M.C., Zhong G.Y. et al. Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. // Genetics. 1996. V. 143. P. 983–999.
50. Efremova T.T., Maystrenko O.I., Arbuzova V.S., Laikova L.I. Genetic analysis of glume colour in common wheat cultivars from the former USSR // Euphytica. 1998. V. 102. P. 211–218.
51. Ellerbrook C., Worland A.J. Using precise genetic stocks to study the genetics of disease resistance in wheat // EWAC Newslett. 2001. V. 11. P. 31–37.
52. Engledow F.L. A case of repulsion in wheat // Cambridge Phil. Soc. Proc. 1914. V. 17. P. 433–435.
53. Erayman M., Sandhu D., Sidhu D. et al. Demarcating the gene-rich regions of the wheat genome // Nucl. Acids Res. 2004. V. 32. P. 3546–3565.
54. Fletcher R.J., McIntosh R.A. Isolation and identifi cation of the chromosome arm bearing Rg determining glume color in Federation wheat // EWAC Newslett. 1974. V. 4. P. 65–66.
55. Flintham J.E., Gale M.D. Dormancy gene maps in homoeologous cereal genomes // Proc. 7th Intern. Symp. on pre-harvest sprouting in cereals. Japan, Osaka, 1995. P. 143–149.
56. Freed R.D., Everson E.H., Ringlund K., Gullord M. Seed coat color in wheat and the relationship to seed dormancy at maturity // Cereal Res. Commun. 1976. V. 4. P. 147–149.
57. Friebe B., Tuleen N., Jiadg J., Gill B.S. Standard karyotype of Triticum longissimum and relationship with T. aestivum // Genome. 1993. V. 36. P. 731–742.
58. Friebe B., Tuleen N.A., Gill B.S. Standard karyotype of Triricum searsii and its relationship with other S-genome species and common wheat // Theor. Appl. Genet. 1995. V. 91. P. 248–254.
59. Friebe B., Qi L.L., Nasuda S. et al. Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines // Theor. Appl. Genet. 2000. V. 101. P. 51–58.
60. Gale M.D., Flavell R.B. The genetic control of anthocyanin biosythesis by homoeologous chromosomes in wheat // Genet. Res. Camb. 1971. V. 18. P. 237–244.
61. Gale M.D., Atkinson M.D., Chinoy C.N. et al. Genetic maps of hexaploid wheat / Eds Z.S. Li, Z.Y. Xin. Proc. 8th Int. Wheat genet. symp. Beijing: China Agricultural Scientech Press, 1995. P. 1333–1500.
62. Ganal M., Röder M.S. Microsatellite and SNP markers in wheat breeding // Genomics-assisted crop improvement / Eds R.K. Varshney, R. Tuberosa. V. 2. Genomics applications in crops. Dordrecht (The Netherlands): Springer, 2007. P. 1–24.
63. Goulden C.H., Neatby K.W., Welsh J.N. The inheritance of resistance to Puccinia graminis tritici in a cross between to varieties of Triticum vulgare // Phytopathol. 1928. V. 18. P. 627.
64. Himi E., Noda K. Red grain colour gene (R) of wheat is a Myb-type transcription factor // Euphytica. 2005. V. 143. P. 239–242.
65. Himi E., Nisar A., Noda K. Colour genes (R and Rc) for grain and coleoptile upregulate fl avonoid biosynthesis genes in wheat // Genome. 2005. V. 48. P. 747–754.
66. Himi E., Maekawa M., Miura H., Noda K. Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat // Theor. Appl. Genet. 2011. V. 122. P. 1561–1576.
67. Howard A., Howard G. On the inheritance of some characters in wheat. I. // India Dept. Agr. Mem. Bot. Ser. 1912. V. 5. P. 1–47.
68. Howard A., Howard G. On the inheritance of some characters in wheat. II. // India Dept. Agr. Mem. Bot. Ser. 1915. V. 7. P. 273–285.
69. Hu J., Anderson B., Wessler R. Isolation and characterization of rice R genes: evidence for distinct evolutionary paths in rice and maize // Genetics. 1996. V. 142. P. 1021–1031.
70. Jha K.K. The association of a gene for purple coleoptile with chromosome 7D of common wheat // Can. J. Genet. Cytol. 1964. V. 6. P. 370–372.
71. Jones S.S., Dvorak J., Qualset C.O. Linkage relations of Gli-D1, Rg2, and Lr21 on the short arm of chromosome 1D in wheat // Genome. 1990. V. 33. P. 937–940.
72. Kadam B.S. Genetics in Bansi wheat of the Bombay-Deccan and synthetic Khapli. Part I // Proc. Indian Acad. Sci. 1936. V. 4. P. 357–369.
73. Kerber E.R., Dyck P.L. Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from Aegilops squarrosa // Can. J. Genet. Cytol. 1969. V. 11. P. 639–647.
74. Kezer A., Boyack B. Mendelian inheritance in wheat and barley crosses, with probable error studies on class frequencies // Colo. Agr. Exp. Sta. Bul. 1918. P. 249.
75. Khlestkina E.K. Regulatory-target gene relationships in allopolyploid and hybrid genomes // Advances in Genetics Research / Ed. K.V. Urbano. N.Y.: NOVA Science Publishers, 2010. V. 3. P. 311–328.
76. Khlestkina E.K., Pestsova E.G., Röder M.S., Börner A. Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L.) // Theor. Appl. Genet. 2002a. V. 104. P. 632–637.
77. Khlestkina E.K., Pestsova E.G., Salina E.A. et al. Molecular mapping and tagging of wheat genes using RAPD, STS and SSR markers // Cell. Mol. Biol. Let. 2002b. V. 7. P. 795–802.
78. Khlestkina E.K., Pshenichnikova T.A., Röder M.S. et al. Comparative mapping of genes for glume colouration and pubescence in hexaploid wheat (Triticum aestivum L.) // Theor. Appl. Genet. 2006. V. 113. P. 801–807.
79. Khlestkina E.K., Röder M.S., Pshenichnikova T.A. et al. Genes for anthocyanin pigmentation in wheat: review and microsatellite-based mapping // Chromosome mapping research developments / Eds J.F. Verrity, L.E. Abbington. N.Y.: NOVA Science Publishers, Inc, 2008а. P. 155–175.
80. Khlestkina E.K., Röder M.S., Salina E.A. Relationship between homoeologous regulatory and structural genes in allopolyploid genome – a case study in bread wheat // BMC Plant Biol. 2008b. V. 8. P. 88.
81. Khlestkina E.K., Giura A., Röder M. S., Börner A. A new gene controlling the fl owering response to photoperiod in wheat // Euphytica. 2009a. V. 165. P. 579–585.
82. Khlestkina E.K., Pshenichnikova T.A., Röder M.S., Börner A. Clustering anthocyanin pigmentation genes in wheat group 7 chromosomes // Cereal Res. Commun. 2009b. V. 37. P. 391–398.
83. Khlestkina E.K., Röder M.S., Börner A. Identifi cation of glume coloration genes in synthetic hexaploid and common wheats // Wheat Inf. Serv. (eWIS) 2009c. V. 108. P. 1–3.
84. Khlestkina E.K., Salina E.A., Pshenichnikova T.A. et al. Glume coloration in wheat: allelism test, consensus mapping and its association with specifi c microsatellite allele // Cereal Res. Commun. 2009d. V. 37. P. 37–43.
85. Khlestkina E.K., Tereshchenko O.Yu., Salina E.A. Anthocyanin biosynthesis genes location and expression in wheat-rye hybrids // Mol. Genet. Genom. 2009e. V. 282. P. 475–485.
86. Khlestkina E.K., Röder M.S., Börner A. Mapping genes controlling anthocyanin pigmentation on the glume and pericarp in tetraploid wheat (Triticum durum L.) // Euphytica. 2010a. V. 171. P. 65–69.
87. Khlestkina E.K., Röder M.S., Pshenichnikova T.A., Börner A. Functional diversity at Rc (red coleoptile) locus in wheat (Triticum aestivum L.) // Mol. Breed. 2010b. V. 25. P. 125–132.
88. Khlestkina E.K., Antonova E.V., Pershina L.A. et al. Variability of Rc (red coleoptile) alleles in wheat and wheat-alien genetic stock collections // Cereal Res. Commun. 2011. V. 39. P. 465–474.
89. Kiessling L. Erbanalytische Untersuchungen über die Spelzenfarbe des weizens // Landw. Jahrbuch Bayern. 1914. Nr. 2. P. 102–170.
90. Korzun V., Röder M.S., Wendehake K. et al. Integration of dinucleotide microsatellites from hexaploid wheat into a genetic linkage map of durum wheat // Theor. Appl. Genet. 1999. V. 98. P. 1202–1207.
91. Kuchel H., Hollamby G., Langridge P. et al. Identifi cation of genetic loci associated with ear-emergence in bread wheat // Theor. Appl. Genet. 2006. V. 113. P. 1103–1112.
92. Kuraparthy V., Sood S., Gill B.S. Targeted genomic mapping of a red seed color gene (R-A1) in wheat // Crop Sci. 2008. V. 48. P. 37–48.
93. Kuspira J., Maclagan J., Bhambhani R.N. et al. Genetic and cytogenetic analyses of the A genome of Triticum monococcum L. V. Inheritance and linkage relationships of genes determining the expression of 12 qualitative characters // Genome 1989. V. 32. P. 869–881.
94. Kuspira J., Unrau J. Determination of the number and dominance relationships of genes on substituted chromosomes in common wheat Triticum aestivum L. // Can. J. Plant Sci. 1958. V. 38. P. 119–205.
95. Law C.N., Chapman V. An inhibitor of glume colour // EWAC Newslett. 1974. V. 4. P. 8–9.
96. Law C.N., Wolfe M.C. Location of genetic factors for mildew resistance and ear emergence time on chromosome 7B of wheat // Can. J. Genet. Cytol. 1966. V. 8. P. 462–470.
97. Leisle D., Kovacs M.I., Howes N. Inheritance and linkage relationships of gliadin proteins and glume color in durum wheat // Can. J. Genet. Cytol. 1985. V. 27. P. 716–721.
98. Li J., Wei H., Hu X. et al. Locus R-D1 conferring red-grain-color in synthetic derivative wheat Chuanmai 42 mapped with SSR markers // Mol. Plant Breed. 2010. V. 1. P. 16–20.
99. Li W.L., Faris J.D., Chittoor J.M. et al. Genomic mapping of defense response genes in wheat // Theor. Appl. Genet. 1999. V. 98. P. 226–233.
100. Liu X.M., Smith C.M., Gill B.S., Tolmay V. Microsatellite markers linked to six Russian wheat aphid resistance genes in wheat // Theor. Appl. Genet. 2001. V. 102. P. 504–510.
101. Liu X.M., Smith C.M., Gill, B.S. Identifi cation of microsatellite markers linked to Russian wheat aphid resistance genes Dn4 and Dn6 // Theor. Appl. Genet. 2002. V. 104. P. 1042–1048.
102. Lohwasser U., Röder M.S., Börner A. QTL mapping of vegetative characters in wheat (Triticum aestivum L.) // Gen. Var. Plant Breed.: proc. 17th EUCARPIA gen. congr. Tulln, 8–11 September, 2004. P. 195–198.
103. Ludwig S.R., Habera L.F., Dellaporta S.L., Wessler S.R. Lc, a member of the maize R gene family responsible for tissue-specifi c anthocyanin production, encodes a protein similar to transcriptional activators and contains the mychomology region // Proc. Natl Acad. Sci. USA. 1989. V. 86. P. 7092–7096.
104. Lundqvist U., Franckowiak J.D., Konishi T. New and revised descriptions of barley genes // Barley Genet. Newslett. 1996. V. 26. P. 22–43.
105. Malinowski E. Les hybrids du froment // Bull. Intern. Acad. Sci. Cracovie. 1914. V. 3. P. 410–450.
106. Matsumura S. Linkage studies in wheat, II. P-linkage and the manifold effects of P gene // Jap. J. Genet. 1950. V. 25. P. 111–118.
107. Maystrenko O.I., Laikova L.I. Chromosomal localization and linkage relationship of the Pan1 and Pc2 genes controlling anthocyanin pigmentation of the anthers and culm in common wheat // EWAC Newslett. 1995. V. 9. P. 120–122.
108. McIntosh R.A., Backer E.P. Inheritance of purple pericarp in wheat // Proc. Linnean Soc. 1967. V. 92. P. 204–208.
109. McIntosh R.A., Hart C.E., Devos K.M. et al. Catalogue of gene symbols for wheat // Proc. IX Intern. Wheat Genet. Symp. V. 5. Saskatoon, 1998. 235 p.
110. McIntosh R.A., Yamazaki Y., Dubcovsky J. et al. Catalogue of gene symbols for wheat. 2008. [http://www.grs.nig.ac.jp/wheat/komugi/genes/]
111. Melz G., Thiele V. Chromosome locations of genes controlling ‘purple leaf base’ in rye and wheat // Euphytica. 1990. V. 49. P. 155–159.
112. Metzger R.J., Silbaugh B.A. Location of genes for seed coat color in hexaploid wheat Triticum aestivum L. // Crop Sci. 1970. V. 10. P. 495–496.
113. Miller T.E. The homoeologous relationship between the chromosomes of rye and wheat. Current status // Can. J. Genet. Cytol. 1984. V. 26. P. 578–589.
114. Miyamoto T., Everson E.H. Biochemical and physiological studies of wheat seed pigmentation // Agron. J. 1958. V. 50. P. 733–734.
115. Nalam V.J., Vales M.I., Watson C.J. et al. Map-based analysis of genes affecting the brittle rachis character in tetraploid wheat (Triticum turgidum L.) // Theor. Appl. Genet. 2006. V. 112. P. 373–381.
116. Nelson J.C., Sorrels M.E., van Deynze A.E. et al. Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7 // Genetics. 1995. V. 141. P. 721–731.
117. Nilsson-Ehle H. Kreuzungsversuchungen an Hafer und Weizen // Lands. Univ. Aersskrift N.F. Afd. 2 (2), 1909. 122 p.
118. Nilsson-Ehle H. Zur Kenntnis der mit der keimungsphysiologie des weizens in zusammenhang stehenden inneren faktoren // Z. Pfl anzenzьct. 1914. V. 2. P. 153–187.
119. Payne P.I., Holt L.M., Johnson R., Snape J.W. Linkage mapping of four gene loci Glu-B1, Gli-B1, Rg1, and Yr10 on chromosome 1B of bread wheat // Genet. Agrar. 1986. V. 40. P. 231–242.
120. Percival J. The Wheat Plant: A Monograph. London: Duckworth and Co, 1921. 463 p.
121. Piech J., Evans L.E. Monosomic analysis of purple grain colour in hexaploid wheat // J. Pflanzenzucht. 1979. V. 82. P. 212–217.
122. Pshenichnikova T.A., Maystrenko O.I. Inheritance of genes coding for gliаdin proteins and glume colour introgressed into Triticum aestivum from a synthetic wheat // Plant Breed. 1995. V. 114. P. 501–504.
123. Pshenichnikova T.A., Ermakova M.F., Chistyakova A.K. et al. Mapping of QTLs associated with the important agronomic traits using recombinant substitution dihaploid lines Saratovskaya 29 (Janetzkis Probat 4D) // Abstr. German-Russian Forum Biotechnology (GRFB). Novosibirsk, 15–19 June, 2009. P. 39.
124. Quisenberry K.S. Inheritance of winter hardiness, growth habit and stem rust reaction in crosses between Minhardi winter and H-44 spring wheats // Tech. Bull. U.S.D.A. 1931. Nо 218. P. 1–45.
125. Röder M.S., Korzun V., Wendehake K. et al. A microsatellite map of wheat // Genetics. 1998. V. 149. P. 2007–2023.
126. Röder M.S., Huang X.Q., Börner A. Fine mapping of the region on wheat chromosome 7D controlling grain weight // Funct. Integr. Genomics. 2008. V. 8. P. 79–86.
127. Rowland G.G., Kerber E.R. Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarrosa // Can. J. Genet. Cytol. 1974. V. 16. P. 137–144.
128. Salina E.A., Leonova I.N., Efremova T.T., Röder M.S. Wheat genome structure: translocations during the course of polyploidization // Funct. Integr. Genomics. 2006. V. 6. P. 71–80.
129. Sears E.R. The aneuploids of common wheat // Univ. Mo. Agr. Sta. Res. Bul. 1954. V. 572. P. 1–59.
130. Sikka S.M., Jain K.B.L., Parmer K.S. Inheritance of some morphological characters in intervarietal crosses of Triticum aestivum L. // J. Indian Bot. Soc. 1961. V. 40. P. 217–233.
131. Simon M.R., Khlestkina E.K., Castillo N.S., Börner A. Mapping quantitative resistance to septoria tritici blotch in spelt wheat // Eur. J. Plant Pathol. 2010. V. 128. P. 317–324.
132. Singh K., Ghai M., Garg M. et al. An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum × T. monococcum RIL population // Theor. Appl. Genet. 2007. V. 115. P. 301–312.
133. Spillman W.J. Quantitative studies on the transmission of parental characters to hybrid offspring // U.S.D.A. Off. Exp. Sta. Bul. 1902. Nо 115. P. 88–89.
134. Stein N., Prasad M., Scholz U. et al. A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics // Theor. Appl. Genet. 2007. V. 114. P. 823–839.
135. Sutka J. The association of genes for purple coleoptile with chromosomes of the wheat variety Mironovskaya 808 // Euphytica. 1977. V. 26. P. 475–479.
136. Tahir C.M., Tsunewaki K. Monosomic analysis of Triticum spelta var. duhamelianum, a fertility-restorer for T. timopheevi cytoplasm // Jap. J. Genet. 1969. V. 44. P. 1–9.
137. Tereshchenko O.Y., Pshenichnikova T.A., Salina E.A., Khlestkina E.K. Development and molecular characterization of a novel wheat genotype having purple grain colour // Cereal Res. Commun. 2012a. V. 40. In press.
138. Tereshchenko O.Y., Gordeeva E.I., Arbuzova V.S. et al. The D genome of wheat carries one of the two complementary genes determining purple grain colour in wheat // Cereal Res. Commun. 2012b. V. 40. In press.
139. Tschermak E. Ueber Züchtung neuer Getreiderassen mittelst künstlicher Kreuzung // Zeitschr. Landw. Versuch. Oesterreich. 1901. V. 4. P. 1029–1060.
140. Unrau J. The use of monosomes and nullisomes in cytogenetic studies in common wheat // Sci. Agr. 1950. V. 30. P. 66–89.
141. van Deynze A.E., Dubovsky J., Gill K.S. et al.. Moleculargenetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat // Genome. 1995. V. 38. P. 45–59.
142. Wang C., Shu Q. Fine Mapping and candidate gene analysis of purple pericarp gene Pb in rice (Oryza sativa L.) // Chinese Sci. Bull. 2007. V. 52. P. 3097–3104.
143. Wang H.-J., Huang X.Q., Röder M.S., Börner A. Genetic mapping of loci determining long glumes in the genus Triticum // Euphytica. 2002. V. 123. P. 287–293.
144. Watanabe N. Near-isogenic lines of durum wheat: their development and plant characteristics // Euphytica. 1994. V. 72. P. 143–147.
145. Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology // Plant Physiol. 2001. V. 126. P. 485–493.
146. Winkel-Shirley B. Biosynthesis of fl avonoids and effects of stress // Curr. Opin. Plant Biol. 2002. V. 5. P. 218–223.
147. Worland A.J., Law C.N., Hollins T.W. et al. Location of a gene for resistance to eyespot (Pseudocercosporella herpotrichoides) on chromosome 7D of bread wheat // Plant Breed. 1988. V. 101. P. 43–51.
148. Worzella W.W. Research in soft red winter wheat // Purdue Univ. Agr. Exp. Sta. Ann. Rep. 1937. V. 50. P. 26.
149. Worzella W.W. Inheritance and inter-relationship of components of quality, cold resistance and morphological characters in wheat hybrids // J. Agric. Res. 1942. V. 65. P. 501–522.
150. Wu C.S., Ausemus E.R. Inheritance of leaf rust and other characters in spring wheat cross // Agron. J. 1930. V. 45. P. 43–48.
151. Zeller F.J., Koller O.L. Identifi cation of 4A/7R and 7B/4R wheat-rye chromosome translocation // Theor. Appl. Genet. 1981. V. 59. P. 33–37.
152. Zeven A.C. The colour of the coleoptile of wheat: a review and geographical distribution of the purple coleoptile of Triticum aestivum // Euphytica. 1973. V. 22. P. 471–478.
153. Zeven A.C. The character brown ear of bread wheat: a review // Euphytica. 1983. V. 32. P. 299–310.
154. Zeven A.C. Wheats with purple and blue grains: a review // Euphytica. 1991. V. 56. P. 243–258.