Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Центральный регуляторный контур генной сети морфогенеза механорецепторов дрозофилы: анализ in silico

https://doi.org/10.18699/VJGB-23-87

Аннотация

Выявление механизмов генетического контроля формирования пространственных структур остается одной из актуальных задач биологии развития. Для ее решения используются как экспериментальные, так и теоретические подходы и методы, в том числе методология генных сетей, а также методы математического и компьютерного моделирования. Реконструкция и анализ генных сетей, обеспечивающих становление признака, позволяют интегрировать существующие экспериментальные данные, выявить ключевые звенья и внутрисетевые связи, обеспечивающие функционирование сетей. Для получения динамических характеристик исследуемых систем, предсказания их состояния и поведения привлекаются методы математического и компьютерного моделирования. Одним из примеров пространственной морфологической структуры является щетиночный рисунок дрозофилы со строго определенным расположением на голове и теле мухи его составляющих – механорецепторов (внешних сенсорных органов). Механорецептор развивается из единственной родительской клетки (РКСО), которая выделяется из клеток эктодермы имагинального диска. Ее отличает от окружения наибольшее содержание пронейральных белков (ASC) – продуктов комплекса пронейральных генов achaete-scute (AS-C). Статус РКСО обеспечивается реконструированной нами ранее генной сетью, ключевым объектом которой является комплекс генов AS-C. Контроль активности комплекса осуществляется ее подсетью – центральным регуляторным контуром в составе семи генов (AS-C, hairy, senseless (sens), charlatan (chn), scratch (scrt), phyllopod (phyl), extramacrochaete (emc)) и одноименных белков. Кроме того, в состав центрального регуляторного контура входят вспомогательные белки Daughterless (DA), Groucho (GRO), Ubiquitin (UB) и Seven-in-absentia (SINA). В работе приведены результаты компьютерного моделирования различных режимов функционирования контура. Показано, что клетка детерминируется как РКСО при повышении содержания ASC примерно в два с половиной раза относительно уровня в клетках окружения. Выявлена иерархия влияния мутаций в генах контура на динамику накопления белков ASC. Наиболее значим главный компонент центрального регуляторного контура – AS-C. Мутации, снижающие содержание ASC более чем на 40 %, приводят к запрету выделения родительской клетки сенсорного органа.

Об авторах

Т. А. Бухарина
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет
Россия

Новосибирск



В. П. Голубятников
Институт математики им. С.Л. Соболева Сибирского отделения Российской академии наук
Россия

Новосибирск



Д. П. Фурман
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет
Россия

Новосибирск



Список литературы

1. Acar M., Jafar­Nejad H., Giagtzoglou N., Yallampalli S., David G., He Y., Delidakis C., Bellen H.J. Senseless physically interacts with proneural proteins and functions as a transcriptional co­activator. Development. 2006;133(10):1979­1989. DOI 10.1242/dev.02372

2. Agol I.J. Step allelomorphism in D. melanogaster. Genetics. 1931; 16(3):254­266. DOI 10.1093/genetics/16.3.254

3. Audibert A., Simon F., Gho M. Cell cycle diversity involves differential regulation of Cyclin E activity in the Drosophila bristle cell lineage. Development. 2005;132(10):2287­2297. DOI 10.1242/dev.01797

4. Ayeni J.O., Audibert A., Fichelson P., Srayko M., Gho M., Campbell S.D. G2 phase arrest prevents bristle progenitor self­renewal and synchronizes cell division with cell fate differentiation. Development. 2016;143(7):1160­1169. DOI 10.1242/dev.134270

5. Bukharina T.A., Akinshin A.A., Golubyatnikov V.P., Furman D.P. Mathematical and numerical models of the central regulatory circuit of the morphogenesis system of Drosophila. J. Appl. Ind. Math. 2020;14(2):249­255. DOI 10.1134/S1990478920020040

6. Cabrera C.V., Alonso M.C. Transcriptional activation by heterodimers of the achaete-scute and daughterless gene products of Drosophila. EMBO J. 1991;10(10):2965­2973. DOI 10.1002/j.1460­2075.1991.tb07847.x

7. Cabrera C.V., Alonso M.C., Huikeshoven H. Regulation of scute function by extramacrochaete in vitro and in vivo. Development. 1994; 120(12):3595­3603. DOI 10.1242/dev.120.12.3595

8. Chang P.J., Hsiao Y.L., Tien A.C., Li Y.C., Pi H. Negative­feedback regulation of proneural proteins controls the timing of neural precursor division. Development. 2008;135(18):3021­3030. DOI 10.1242/dev.021923

9. Chasman D., Fotuhi Siahpirani A., Roy S. Network­based approaches for analysis of complex biological systems. Curr. Opin. Biotechnol. 2016;39:157­166. DOI 10.1016/j.copbio.2016.04.007

10. Corson F., Couturier L., Rouault H., Mazouni K., Schweisguth F. Self­organized Notch dynamics generate stereotyped sensory organ patterns in Drosophila. Science. 2017;356(6337):eaai7407. DOI 10.1126/science.aai7407

11. Cubas P., de Celis J.F., Campuzano S., Modolell J. Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc. Genes Dev. 1991;5(6):996­1008. DOI 10.1101/gad.5.6.996

12. de Celis J.F., Marí­Beffa M., García­Bellido A. Function of trans­acting genes of the achaete-scute complex in sensory organ patterning in the mesonotum of Drosophila. Rouxs Arch. Dev. Biol. 1991;200(2): 64­76. DOI 10.1007/BF00637186

13. Dubinin N.P. Step­allelomorphism in D. melanogaster. The allelomorphs achaete2-scute10, achaete1-scute11 and achaete3-scute13. J. Genet. 1932;25(2):163­181. DOI 10.1007/BF02983250

14. Emmert­Streib F., Glazko G.V. Network biology: a direct approach to study biological function. Wiley Interdiscip. Rev. Syst. Biol. Med. 2011;3(4):379­391. DOI 10.1002/wsbm.134

15. Escudero L.M., Caminero E., Schulze K.L., Bellen H.J., Modolell J. Charlatan, a Zn­finger transcription factor, establishes a novel level of regulation of the proneural achaete/scute genes of Drosophila. Development. 2005;132(6):1211­1222. DOI 10.1242/dev.01691

16. Furman D.P., Bukharina T.A. Genetic regulation of morphogenesis of Drosophila melanogaster mechanoreceptors. Russ. J. Dev. Biol. 2022;53(4):239­251. DOI 10.1134/S1062360422040038

17. Garcıa­Bellido A., de Celis J.F. The complex tale of the achaete-scute complex: a paradigmatic case in the analysis of gene organization and function during development. Genetics. 2009;182(3):631­639. DOI 10.1534/genetics.109.104083

18. Ghysen A., Thomas R. The formation of sense organs in Drosophila: a logical approach. Bioessays. 2003;25(8):802­807. DOI 10.1002/bies.10311

19. Giri R., Brady S., Papadopoulos D.K., Carthew R.W. Single­cell Senseless protein analysis reveals metastable states during the transition to a sensory organ fate. iScience. 2022;25(10):105097. DOI 10.1016/j.isci.2022.105097

20. Golubyatnikov V.P., Bukharina T.A., Furman D.P. A model study of the morphogenesis of D. melanogaster mechanoreceptors: the central regulatory circuit. J. Bioinform. Comput. Biol. 2015;13(1):1540006. DOI 10.1142/S0219720015400065

21. Hsu C.P., Lee P.H., Chang C.W., Lee C.T. Constructing quantitative models from qualitative mutant phenotypes: preferences in selecting sensory organ precursors. Bioinformatics. 2006;22(11):1375­1382. DOI 10.1093/bioinformatics/btl082

22. Huang F., Dambly­Chaudiere C., Ghysen A. The emergence of sense organs in the wing disc of Drosophila. Development. 1991;111(4): 1087­1095. DOI 10.1242/dev.111.4.1087

23. Ingham P.W., Pinchin S.M., Howard K.R., Ish­Horowicz D. Genetic analysis of the hairy locus in Drosophila melanogaster. Genetics. 1985;111(3):463­486. DOI 10.1093/genetics/111.3.463

24. Kawamori A., Shimaji K., Yamaguchi M. Temporal and spatial pattern of dref expression during Drosophila bristle development. Cell Struct. Funct. 2013;38(2):169­181. DOI 10.1247/csf.13004

25. Kolchanov N.A., Ignatieva E.V., Podkolodnaya O.A., Likhoshvai V.A., Matushkin Y.G. Gene networks. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/2): 833­850 (in Russian)

26. Marnellos G., Mjolsness E. A gene network approach to modeling early neurogenesis in Drosophila. In: Pacific Symposium on Biocomputing ‘98, January 4–9, 1998, in Hawaii. World Scientific Pub Co Inc., 1998;30­41

27. Meir E., von Dassow G., Munro E., Odell G.M. Robustness, flexi bility, and the role of lateral inhibition in the neurogenic network. Curr. Biol. 2002;12(10):778­786. DOI 10.1016/s0960­9822(02)00839­4

28. Moscoso del Prado J., Garcia­Bellido A. Genetic regulation of the achaete-scute complex of Drosophila melanogaster. Wilehm Roux Arch. Dev. Biol. 1984;193(4):242­245. DOI 10.1007/BF01260345

29. Nolo R., Abbott L.A., Bellen H.J. Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell. 2000;102(3):349­362. DOI 10.1016/s00928674(00)00040­4

30. Pi H., Wu H.J., Chien C.T. A dual function of phyllopod in Drosophila external sensory organ development: cell fate specification of sensory organ precursor and its progeny. Development. 2001;128(14): 2699­2710. DOI 10.1242/dev.128.14.2699

31. Reeves N., Posakony J.W. Genetic programs activated by proneural proteins in the developing Drosophila PNS. Dev. Cell. 2005;8(3): 413­425. DOI 10.1016/j.devcel.2005.01.020

32. Roark M., Sturtevant M.A., Emery J., Vaessin H., Grell E., Bier E. scratch, a pan­neural gene encoding a zinc finger protein related to snail, promotes neuronal development. Genes Dev. 1995;9(19): 2384­2398. DOI 10.1101/gad.9.19.2384

33. Schlitt T., Palin K., Rung J., Dietmann S., Lappe M., Ukkonen E., Brazma A. From gene networks to gene function. Genome Res. 2003;13(12):2568­2576. DOI 10.1101/gr.1111403

34. Skeath J.B., Carroll S.B. Regulation of achaete-scute gene expression and sensory organ pattern formation in the Drosophila wing. Genes Dev. 1991;5(6):984­995. DOI 10.1101/gad.5.6.984

35. Usui K., Kimura K.I. Sequential emergence of the evenly spaced microchaetes on the notum of Drosophila. Rouxs Arch. Dev. Biol. 1993; 203(3):151­158. DOI 10.1007/BF00365054

36. Usui K., Goldstone C., Gibert J.M., Simpson P. Redundant mechanisms mediate bristle patterning on the Drosophila thorax. Proc. Natl. Acad. Sci. USA. 2008;105(51):20112­20117. DOI 10.1073/pnas.0804282105

37. Vaessin H., Brand M., Jan L.Y., Jan Y.N. daughterless is essential for neuronal precursor differentiation but not for initiation of neuronal precursor formation in Drosophila embryo. Development. 1994;120(4):935­945. DOI 10.1242/dev.120.4.935

38. Van Doren M., Powell P.A., Pasternak D., Singson A., Posakony J.W. Spatial regulation of proneural gene activity: auto­ and cross­activation of achaete is antagonized by extramacrochaetae. Genes Dev. 1992;6(12B):2592­2605. DOI 10.1101/gad.6.12b.2592

39. Van Doren M., Bailey A.M., Esnayra J., Ede K., Posakony J.W. Negative regulation of proneural gene activity: hairy is a direct transcriptional repressor of achaete. Genes Dev. 1994;8(22):2729­2749. DOI 10.1101/gad.8.22.2729

40. Yamasaki Y., Lim Y.M., Niwa N., Hayashi S., Tsuda L. Robust specification of sensory neurons by dual functions of charlatan, a Drosophila NRSF/REST­like repressor of extramacrochaetae and hairy. Genes Cells. 2011;16(8):896­909. DOI 10.1111/j.1365­2443.2011.01537.x

41. Yasugi T., Sato M. Mathematical modeling of Notch dynamics in Drosophila neural development. Fly (Austin). 2022;16(1):24­36. DOI 10.1080/19336934.2021.1953363

42. Zhu X., Gerstein M., Snyder M. Getting connected: analysis and principles of biological networks. Genes Dev. 2007;21(9):1010­1024. DOI 10.1101/gad.1528707


Рецензия

Просмотров: 336


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)