Preview

Vavilov Journal of Genetics and Breeding

Advanced search

The central regulatory circuit in the gene network controlling the morphogenesis of Drosophila mechanoreceptors: an in silico analysis

https://doi.org/10.18699/VJGB-23-87

Abstract

Identification of the mechanisms underlying the genetic control of spatial structure formation is among the relevant tasks of developmental biology. Both experimental and theoretical approaches and methods are used for this purpose, including gene network methodology, as well as mathematical and computer modeling. Reconstruction and analysis of the gene networks that provide the formation of traits allow us to integrate the existing experimental data and to identify the key links and intra-network connections that ensure the function of networks. Mathematical and computer modeling is used to obtain the dynamic characteristics of the studied systems and to predict their state and behavior. An example of the spatial morphological structure is the Drosophila bristle pattern with a strictly defined arrangement of its components – mechanoreceptors (external sensory organs) – on the head and body. The mechanoreceptor develops from a single sensory organ parental cell (SOPC), which is isolated from the ectoderm cells of the imaginal disk. It is distinguished from its surroundings by the highest content of proneural proteins (ASC), the products of the achaete-scute proneural gene complex (AS-C). The SOPC status is determined by the gene network we previously reconstructed and the AS-C is the key component of this network. AS-C activity is controlled by its subnetwork – the central regulatory circuit (CRC) comprising seven genes: AS-C, hairy, senseless (sens), charlatan (chn), scratch (scrt), phyllopod (phyl), and extramacrochaete (emc), as well as their respective proteins. In addition, the CRC includes the accessory proteins Daughterless (DA), Groucho (GRO), Ubiquitin (UB), and Seven-in-absentia (SINA). The paper describes the results of computer modeling of different CRC operation modes. As is shown, a cell is determined as an SOPC when the ASC content increases approximately 2.5-fold relative to the level in the surrounding cells. The hierarchy of the effects of mutations in the CRC genes on the dynamics of ASC protein accumulation is clarified. AS-C as the main CRC component is the most significant. The mutations that decrease the ASC content by more than 40 % lead to the prohibition of SOPC segregation.

About the Authors

T. A. Bukharina
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



V. P. Golubyatnikov
Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



D. P. Furman
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



References

1. Acar M., Jafar­Nejad H., Giagtzoglou N., Yallampalli S., David G., He Y., Delidakis C., Bellen H.J. Senseless physically interacts with proneural proteins and functions as a transcriptional co­activator. Development. 2006;133(10):1979­1989. DOI 10.1242/dev.02372

2. Agol I.J. Step allelomorphism in D. melanogaster. Genetics. 1931; 16(3):254­266. DOI 10.1093/genetics/16.3.254

3. Audibert A., Simon F., Gho M. Cell cycle diversity involves differential regulation of Cyclin E activity in the Drosophila bristle cell lineage. Development. 2005;132(10):2287­2297. DOI 10.1242/dev.01797

4. Ayeni J.O., Audibert A., Fichelson P., Srayko M., Gho M., Campbell S.D. G2 phase arrest prevents bristle progenitor self­renewal and synchronizes cell division with cell fate differentiation. Development. 2016;143(7):1160­1169. DOI 10.1242/dev.134270

5. Bukharina T.A., Akinshin A.A., Golubyatnikov V.P., Furman D.P. Mathematical and numerical models of the central regulatory circuit of the morphogenesis system of Drosophila. J. Appl. Ind. Math. 2020;14(2):249­255. DOI 10.1134/S1990478920020040

6. Cabrera C.V., Alonso M.C. Transcriptional activation by heterodimers of the achaete-scute and daughterless gene products of Drosophila. EMBO J. 1991;10(10):2965­2973. DOI 10.1002/j.1460­2075.1991.tb07847.x

7. Cabrera C.V., Alonso M.C., Huikeshoven H. Regulation of scute function by extramacrochaete in vitro and in vivo. Development. 1994; 120(12):3595­3603. DOI 10.1242/dev.120.12.3595

8. Chang P.J., Hsiao Y.L., Tien A.C., Li Y.C., Pi H. Negative­feedback regulation of proneural proteins controls the timing of neural precursor division. Development. 2008;135(18):3021­3030. DOI 10.1242/dev.021923

9. Chasman D., Fotuhi Siahpirani A., Roy S. Network­based approaches for analysis of complex biological systems. Curr. Opin. Biotechnol. 2016;39:157­166. DOI 10.1016/j.copbio.2016.04.007

10. Corson F., Couturier L., Rouault H., Mazouni K., Schweisguth F. Self­organized Notch dynamics generate stereotyped sensory organ patterns in Drosophila. Science. 2017;356(6337):eaai7407. DOI 10.1126/science.aai7407

11. Cubas P., de Celis J.F., Campuzano S., Modolell J. Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc. Genes Dev. 1991;5(6):996­1008. DOI 10.1101/gad.5.6.996

12. de Celis J.F., Marí­Beffa M., García­Bellido A. Function of trans­acting genes of the achaete-scute complex in sensory organ patterning in the mesonotum of Drosophila. Rouxs Arch. Dev. Biol. 1991;200(2): 64­76. DOI 10.1007/BF00637186

13. Dubinin N.P. Step­allelomorphism in D. melanogaster. The allelomorphs achaete2-scute10, achaete1-scute11 and achaete3-scute13. J. Genet. 1932;25(2):163­181. DOI 10.1007/BF02983250

14. Emmert­Streib F., Glazko G.V. Network biology: a direct approach to study biological function. Wiley Interdiscip. Rev. Syst. Biol. Med. 2011;3(4):379­391. DOI 10.1002/wsbm.134

15. Escudero L.M., Caminero E., Schulze K.L., Bellen H.J., Modolell J. Charlatan, a Zn­finger transcription factor, establishes a novel level of regulation of the proneural achaete/scute genes of Drosophila. Development. 2005;132(6):1211­1222. DOI 10.1242/dev.01691

16. Furman D.P., Bukharina T.A. Genetic regulation of morphogenesis of Drosophila melanogaster mechanoreceptors. Russ. J. Dev. Biol. 2022;53(4):239­251. DOI 10.1134/S1062360422040038

17. Garcıa­Bellido A., de Celis J.F. The complex tale of the achaete-scute complex: a paradigmatic case in the analysis of gene organization and function during development. Genetics. 2009;182(3):631­639. DOI 10.1534/genetics.109.104083

18. Ghysen A., Thomas R. The formation of sense organs in Drosophila: a logical approach. Bioessays. 2003;25(8):802­807. DOI 10.1002/bies.10311

19. Giri R., Brady S., Papadopoulos D.K., Carthew R.W. Single­cell Senseless protein analysis reveals metastable states during the transition to a sensory organ fate. iScience. 2022;25(10):105097. DOI 10.1016/j.isci.2022.105097

20. Golubyatnikov V.P., Bukharina T.A., Furman D.P. A model study of the morphogenesis of D. melanogaster mechanoreceptors: the central regulatory circuit. J. Bioinform. Comput. Biol. 2015;13(1):1540006. DOI 10.1142/S0219720015400065

21. Hsu C.P., Lee P.H., Chang C.W., Lee C.T. Constructing quantitative models from qualitative mutant phenotypes: preferences in selecting sensory organ precursors. Bioinformatics. 2006;22(11):1375­1382. DOI 10.1093/bioinformatics/btl082

22. Huang F., Dambly­Chaudiere C., Ghysen A. The emergence of sense organs in the wing disc of Drosophila. Development. 1991;111(4): 1087­1095. DOI 10.1242/dev.111.4.1087

23. Ingham P.W., Pinchin S.M., Howard K.R., Ish­Horowicz D. Genetic analysis of the hairy locus in Drosophila melanogaster. Genetics. 1985;111(3):463­486. DOI 10.1093/genetics/111.3.463

24. Kawamori A., Shimaji K., Yamaguchi M. Temporal and spatial pattern of dref expression during Drosophila bristle development. Cell Struct. Funct. 2013;38(2):169­181. DOI 10.1247/csf.13004

25. Kolchanov N.A., Ignatieva E.V., Podkolodnaya O.A., Likhoshvai V.A., Matushkin Y.G. Gene networks. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/2): 833­850 (in Russian)

26. Marnellos G., Mjolsness E. A gene network approach to modeling early neurogenesis in Drosophila. In: Pacific Symposium on Biocomputing ‘98, January 4–9, 1998, in Hawaii. World Scientific Pub Co Inc., 1998;30­41

27. Meir E., von Dassow G., Munro E., Odell G.M. Robustness, flexi bility, and the role of lateral inhibition in the neurogenic network. Curr. Biol. 2002;12(10):778­786. DOI 10.1016/s0960­9822(02)00839­4

28. Moscoso del Prado J., Garcia­Bellido A. Genetic regulation of the achaete-scute complex of Drosophila melanogaster. Wilehm Roux Arch. Dev. Biol. 1984;193(4):242­245. DOI 10.1007/BF01260345

29. Nolo R., Abbott L.A., Bellen H.J. Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell. 2000;102(3):349­362. DOI 10.1016/s00928674(00)00040­4

30. Pi H., Wu H.J., Chien C.T. A dual function of phyllopod in Drosophila external sensory organ development: cell fate specification of sensory organ precursor and its progeny. Development. 2001;128(14): 2699­2710. DOI 10.1242/dev.128.14.2699

31. Reeves N., Posakony J.W. Genetic programs activated by proneural proteins in the developing Drosophila PNS. Dev. Cell. 2005;8(3): 413­425. DOI 10.1016/j.devcel.2005.01.020

32. Roark M., Sturtevant M.A., Emery J., Vaessin H., Grell E., Bier E. scratch, a pan­neural gene encoding a zinc finger protein related to snail, promotes neuronal development. Genes Dev. 1995;9(19): 2384­2398. DOI 10.1101/gad.9.19.2384

33. Schlitt T., Palin K., Rung J., Dietmann S., Lappe M., Ukkonen E., Brazma A. From gene networks to gene function. Genome Res. 2003;13(12):2568­2576. DOI 10.1101/gr.1111403

34. Skeath J.B., Carroll S.B. Regulation of achaete-scute gene expression and sensory organ pattern formation in the Drosophila wing. Genes Dev. 1991;5(6):984­995. DOI 10.1101/gad.5.6.984

35. Usui K., Kimura K.I. Sequential emergence of the evenly spaced microchaetes on the notum of Drosophila. Rouxs Arch. Dev. Biol. 1993; 203(3):151­158. DOI 10.1007/BF00365054

36. Usui K., Goldstone C., Gibert J.M., Simpson P. Redundant mechanisms mediate bristle patterning on the Drosophila thorax. Proc. Natl. Acad. Sci. USA. 2008;105(51):20112­20117. DOI 10.1073/pnas.0804282105

37. Vaessin H., Brand M., Jan L.Y., Jan Y.N. daughterless is essential for neuronal precursor differentiation but not for initiation of neuronal precursor formation in Drosophila embryo. Development. 1994;120(4):935­945. DOI 10.1242/dev.120.4.935

38. Van Doren M., Powell P.A., Pasternak D., Singson A., Posakony J.W. Spatial regulation of proneural gene activity: auto­ and cross­activation of achaete is antagonized by extramacrochaetae. Genes Dev. 1992;6(12B):2592­2605. DOI 10.1101/gad.6.12b.2592

39. Van Doren M., Bailey A.M., Esnayra J., Ede K., Posakony J.W. Negative regulation of proneural gene activity: hairy is a direct transcriptional repressor of achaete. Genes Dev. 1994;8(22):2729­2749. DOI 10.1101/gad.8.22.2729

40. Yamasaki Y., Lim Y.M., Niwa N., Hayashi S., Tsuda L. Robust specification of sensory neurons by dual functions of charlatan, a Drosophila NRSF/REST­like repressor of extramacrochaetae and hairy. Genes Cells. 2011;16(8):896­909. DOI 10.1111/j.1365­2443.2011.01537.x

41. Yasugi T., Sato M. Mathematical modeling of Notch dynamics in Drosophila neural development. Fly (Austin). 2022;16(1):24­36. DOI 10.1080/19336934.2021.1953363

42. Zhu X., Gerstein M., Snyder M. Getting connected: analysis and principles of biological networks. Genes Dev. 2007;21(9):1010­1024. DOI 10.1101/gad.1528707


Review

Views: 375


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)