Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Molecular-genetic pathways of hepatitis C virus regulation of the expression of cellular factors PREB and PLA2G4C, which play an important role in virus replication

https://doi.org/10.18699/VJGB-23-90

Abstract

The participants of Hepatitis C virus (HCV) replication are both viral and host proteins. Therapeutic approaches based on activity inhibition of viral non-structural proteins NS3, NS5A, and NS5B are undergoing clinical trials. However, rapid mutation processes in the viral genome and acquisition of drug resistance to the existing drugs remain the main obstacles to fighting HCV. Identifying the host factors, exploring their role in HCV RNA replication, and studying viral effects on their expression is essential for understanding the mechanisms of viral replication and developing novel, effective curative approaches. It is known that the host factors PREB (prolactin regulatory element binding) and PLA2G4C (cytosolic phospholipase A2 gamma) are important for the functioning of the viral replicase complex and the formation of the platforms of HCV genome replication. The expression of PREB and PLA2G4C was significantly elevated in the presence of the HCV genome. However, the mechanisms of its regulation by HCV remain unknown. In this paper, using a text-mining technology provided by ANDSystem, we reconstructed and analyzed gene networks describing regulatory effects on the expression of PREB and PLA2G4C by HCV proteins. On the basis of the gene network analysis performed, we put forward hypotheses about the modulation of the host factors functions resulting from protein-protein interaction with HCV proteins. Among the viral proteins, NS3 showed the  greatest number of regulatory linkages. We assumed that NS3 could inhibit the function of host transcription factor (TF) NOTCH1 by protein-protein interaction, leading to upregulation of PREB and PLA2G4C. Analysis of the gene networks and data on differential gene expression in HCV-infected cells allowed us to hypothesize further how HCV could regulate the expression of TFs, the binding sites of which are localized within PREB and PLA2G4C gene regions. The results obtained can be used for planning studies of the molecular-genetic mechanisms of viral-host interaction and searching for potential targets for anti-HCV therapy.

About the Authors

E. L. Mishchenko
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Kurchatov Genomic Center of ICG SB RAS
Russian Federation

Novosibirsk



A. A. Makarova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



E. A. Antropova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



A. S. Venzel
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Kurchatov Genomic Center of ICG SB RAS
Russian Federation

Novosibirsk



T. V. Ivanisenko
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Kurchatov Genomic Center of ICG SB RAS
Russian Federation

Novosibirsk



P. S. Demenkov
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Kurchatov Genomic Center of ICG SB RAS; Novosibirsk State University
Russian Federation

Novosibirsk



V. A. Ivanisenko
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Kurchatov Genomic Center of ICG SB RAS; Novosibirsk State University
Russian Federation

Novosibirsk



References

1. Alam A., Hana Z., Jin Z., Suen K.C., Ma D. Surgery, neuroinflammation and cognitive impairment. EBioMedicine. 2018;37:547-556. DOI 10.1016/j.ebiom.2018.10.021

2. Basov N.V., Rogachev A.D., Aleshkova M.A., Gaisler E.V., Sotnikova Y.S., Patrushev Y.V., Tolstikova T.G., Yarovaya O.I., Pokrovsky A.G., Salakhutdinov N.F. Global LC-MS/MS targeted metabolomics using a combination of HILIC and RP LC separation modes on an organic monolithic column based on 1-vinyl-1,2,4-triazole. Talanta. 2024;267:125168. DOI 10.1016/j.talanta.2023.125168

3. Brown C.H. Delirium in the cardiac surgical intensive care unit. Curr. Opin. Anaesthesiol. 2014;27(2):117-122. DOI 10.1097/ACO.0000000000000061

4. Cerejeira J., Firmino H., Vaz-Serra A., Mukaetova-Ladinska E.B. The neuroinflammatory hypothesis of delirium. Acta Neuropathol. 2010; 119(6):737-775. DOI 10.1007/s00401-010-0674-1

5. Corre I., Guillonneau M., Paris F. Membrane signaling induced by high doses of ionizing radiation in the endothelial compartment. Relevance in radiation toxicity. Int. J. Mol. Sci. 2013;14(11):2267822696. DOI 10.3390/ijms141122678

6. Gao L., Taha R., Gauvin D., Othmen L.B., Wang Y., Blaise G. Postoperative cognitive dysfunction after cardiac surgery. Chest. 2005; 128(5):3664-3670. DOI 10.1378/chest.128.5.3664

7. García-Bueno B., Gassó P., MacDowell K.S., Callado L.F., Mas S., Bernardo M., Lafuente A., Meana J.J., Leza J.C. Evidence of activation of the Toll-like receptor-4 proinflammatory pathway in patients with schizophrenia. J. Psychiatry Neurosci. 2016a;41(3):E46-E55. DOI 10.1503/jpn.150195

8. García Bueno B., Caso J.R., Madrigal J.L., Leza J.C. Innate immune receptor Toll-like receptor 4 signalling in neuropsychiatric di sea ses. Neurosci. Biobehav. Rev. 2016b;64:134-147. DOI 10.1016/j.neubiorev.2016.02.013

9. Gottesman R.F., Grega M.A., Bailey M.M., Pham L.D., Zeger S.L., Baum gartner W.A., Selnes O.A., McKhann G.M. Delirium after coronary artery bypass graft surgery and late mortality. Ann. Neurol. 2010;67(3):338-344. DOI 10.1002/ana.21899

10. Grassmé H., Cremesti A., Kolesnick R., Gulbins E. Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene. 2003; 22(35):5457-5470. DOI 10.1038/sj.onc.1206540

11. Guo Y., Li Y., Zhang Y., Fang S., Xu X., Zhao A., Zhang J., Li J.V., Ma D., Jia W., Jiang W. Post-operative delirium associated with metabolic alterations following hemi-arthroplasty in older patients. Age Ageing. 2019;49(1):88-95. DOI 10.1093/ageing/afz132

12. Huang D.W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protocols. 2009;4(1):44-57. DOI 10.1038/nprot.2008.211

13. Huang H., Han J., Li Y., Yang Y., Shen J., Fu Q., Chen Y. Early serum metabolism profile of post-operative delirium in elderly patients following cardiac surgery with cardiopulmonary bypass. Front. Aging Neurosci. 2022;14:857902. DOI 10.3389/fnagi.2022.857902

14. Ivanisenko T.V., Saik O.V., Demenkov P.S., Ivanisenko N.V., Savostianov A.N., Ivanisenko V.A. ANDDigest: a new web-based module of ANDSystem for the search of knowledge in the scientific literature. BMC Bioinformatics. 2020;21(Suppl.11):228. DOI 10.1186/s12859-020-03557-8

15. Ivanisenko T.V., Demenkov P.S., Kolchanov N.A., Ivanisenko V.A. The new version of the ANDDigest tool with improved ai-based short names recognition. Int. J. Mol. Sci. 2022;23(23):14934. DOI 10.3390/ijms232314934

16. Ivanisenko V.A., Saik O.V., Ivanisenko N.V., Tiys E.S., Ivanisen ko T.V., Demenkov P.S., Kolchanov N.A. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology. BMC Sys. Biol. 2015;9(Suppl.2):S2. DOI 10.1186/1752-0509-9-S2-S2

17. Ivanisenko V.A., Demenkov P.S., Ivanisenko T.V., Mishchenko E.L., Saik O.V. A new version of the ANDSystem tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression. BMC Bioinformatics. 2019; 20(Suppl.1):34. DOI 10.1186/s12859-018-2567-6

18. Ivanisenko V.A., Gaisler E.V., Basov N.V., Rogachev A.D., Cheresiz S.V., Ivanisenko T.V., Demenkov P.S., Mishchenko E.L., Khripko O.P., Khripko Y.I., Voevoda S.M. Plasma metabolomics and gene regulatory networks analysis reveal the role of nonstructural SARSCoV-2 viral proteins in metabolic dysregulation in COVID-19 patients. Sci. Rep. 2022;12(1):19977. DOI 10.1038/s41598-022-24170-0

19. Kanehisa M. The KEGG Database. In: ‘In silico’ Simulation of Biological Processes: Novartis Foundation Symposium. Chichester, UK: John Wiley & Sons, 2002;247:91-103. DOI 10.1002/0470857897.ch8

20. Kanehisa M., Sato Y., Kawashima M. KEGG mapping tools for uncovering hidden features in biological data. Protein Sci. 2022;31(1): 47-53. DOI 10.1002/pro.4172

21. Ke C., Pan C.W., Zhang Y., Zhu X., Zhang Y. Metabolomics facilitates the discovery of metabolic biomarkers and pathways for ischemic stroke: a systematic review. Metabolomics. 2019;15(12):152. DOI 10.1007/s11306-019-1615-1

22. Li K., Naviaux J.C., Bright A.T., Wang L., Naviaux R.K. A robust, single-injection method for targeted, broad-spectrum plasma metabolomics. Metabolomics. 2017;13(10):122. DOI 10.1007/s11306-017-1264-1

23. Morimoto Y., Yoshimura M., Utada K., Setoyama K., Matsumoto M., Sakabe T. Prediction of postoperative delirium after abdominal surgery in the elderly. J. Anesth. 2009;23(1):51-56. DOI 10.1007/s00540-008-0688-1

24. Nosrati‐Oskouie M., Aghili‐Moghaddam N.S., Sathyapalan T., Sahebkar A. Impact of curcumin on fatty acid metabolism. Phytother. Res. 2021;35(9):4748-4762. DOI 10.1002/ptr.7105

25. O’Sullivan R., Inouye S.K., Meagher D. Delirium and depression: inter-relationship and clinical overlap in elderly people. Lancet Psychiatry. 2014;1(4):303-311. DOI 10.1016/S2215-0366(14)70281-0

26. Patrushev Y.V., Sotnikova Y.S., Sidel’nikov V.N. A monolithic column with a sorbent based on 1-vinyl-1,2,4-triazole for hydrophilic HPLC. Protect. Met. Phys. Chem. Surf. 2020;56(1):49-53. DOI 10.1134/s2070205119060248

27. Pisani M.A., Kong S.Y.J., Kasl S.V., Murphy T.E., Araujo K.L.B., Ness P.H.V. Days of delirium are associated with 1-year mortality in an older intensive care unit population. Am. J. Resp. Crit. Care Med. 2009;180(11):1092-1097. DOI 10.1164/rccm.200904-0537OC

28. Rogachev A.D., Alemasov N.A., Ivanisenko V.A., Ivanisenko N.V., Gai sler E.V., Oleshko O.S., Cheresiz S.V., Mishinov S.V., Stupak V.V., Pokrovsky A.G. Correlation of metabolic profiles of plasma and cerebrospinal fluid of high-grade glioma patients. Metabolites. 2021;11(3):133. DOI 10.3390/metabo11030133

29. Squiccimarro E., Labriola C., Malvindi P.G., Margari V., Guida P., Visicchio G., Kounakis G., Favale A., Dambruoso P., Mastrototaro G., Lorusso R., Paparella D. Prevalence and clinical impact of systemic inflammatory reaction after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2019;33(6):1682-1690. DOI 10.1053/j.jvca.2019.01.043

30. Stafford-Smith M., Patel U.D., Phillips-Bute B.G., Shaw A.D., Swaminathan M. Acute kidney injury and chronic kidney disease after cardiac surgery. Adv. Chronic Kidney Dis. 2008;15(3):257-277. DOI 10.1053/j.ackd.2008.04.006

31. Steiner L.A. Postoperative delirium. Part 1: Pathophysiology and risk factors. Eur. J. Anaesthesiol. 2011;28(9):628-636. DOI 10.1097/EJA.0b013e328349b7f5

32. Tripp B.A., Dillon S.T., Yuan M., Asara J.M., Vasunilashorn S.M., Fong T.G., Metzger E.D., Inouye S.K., Xie Z., Ngo L.H., Marcantonio E.R., Libermann T.A., Otu H.H. Targeted metabolomics analysis of postoperative delirium. Sci. Rep. 2021;11(1):1521. DOI 10.1038/s41598-020-80412-z

33. Vutskits L., Xie Z. Lasting impact of general anaesthesia on the brain: mechanisms and relevance. Nat. Rev. Neurosci. 2016;17:705-717. DOI 10.1038/nrn.2016.128

34. Wang Y., Shen X. Postoperative delirium in the elderly: the potential neuropathogenesis. Aging Clin. Experim. Res. 2018;30(11):12871295. DOI 10.1007/s40520-018-1008-8

35. Wimmer-Greinecker G., Matheis G., Brieden M., Dietrich M., Oremek G., Westphal K., Winkelmann B.R., Moritz A. Neuropsychological changes after cardiopulmonary bypass for coronary artery bypass grafting. Thorac. Cardiovasc. Surg. 1998;46(4):207-212. DOI 10.1055/s-2007-1010226

36. Xiao M.Z., Liu C.X., Zhou L.G., Yang Y., Wang Y. Postoperative delirium, neuroinflammation, and influencing factors of postoperative delirium: a review. Medicine. 2023;102(8):e32991-e32991. DOI 10.1097/MD.0000000000032991

37. Antropova E.A., Khlebodarova T.M., Demenkov P.S., Venzel A.S., Ivanisenko N.V., Gavrilenko A.D., Ivanisenko T.V., Adamovskaya A.V., Revva P.M., Lavrik I.N., Ivanisenko V.A. Computer analysis of regulation of hepatocarcinoma marker genes hypermethylated by HCV proteins. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2022;26(8):733-742. DOI 10.18699/VJGB-22-89

38. Bartenschlager R., Lohmann V., Penin F. The molecular and structural basis of advanced antiviral therapy for hepatitis C virus infection. Nat. Rev. Microbiol. 2013;11(7):482-496. DOI 10.1038/nrmicro3046

39. Berger K.L., Kelly S.M., Jordan T.X., Tartell M.A., Randall G. Hepatitis C virus stimulates the phosphatidylinositol 4-kinase III alphadependent phosphatidylinositol 4-phosphate production that is essential for its replication. J. Virol. 2011;85(17):8870-8883. DOI 10.1128/JVI.00059-11

40. Brown W.J., Chambers K., Doody A. Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic. 2003;4(4):214-221. DOI 10.1034/j.1600-0854.2003.00078.x

41. Diehl S.A., Schmidlin H., Nagasawa M., van Haren S.D., Kwakkenbos M.J., Yasuda E., Beaumont T., Scheeren F.A., Spits H. STAT3mediated up-regulation of BLIMP1 is coordinated with BCL6 downregulation to control human plasma cell differentiation. J. Immu nol. 2008;180(7):4805-4815. DOI 10.4049/jimmunol.180.7.4805

42. Edgar R., Domrachev M., Lash A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res . 2002;30(1):207-210. DOI 10.1093/nar/30.1.207

43. Hu Y.W., Zhang P., Yang J.Y., Huang J.L., Ma X., Li S.F., Zhao J.Y., Hu Y.R., Wang Y.C., Gao J.J., Sha Y.H., Zheng L., Wang Q. Nur77 decreases atherosclerosis progression in apoE–/– mice fed a high-fat/ high-cholesterol diet. PLoS One. 2014;9(1):e87313. DOI 10.1371/journal.pone.0087313

44. Ivanisenko T.V., Saik O.V., Demenkov P.S., Ivanisenko N.V., Savostianov A.N., Ivanisenko V.A. ANDDigest: a new web-based module of ANDSystem for the search of knowledge in the scientific literature. BMC Bioinformatics. 2020;21(Suppl.11):228. DOI 10.1186/s12859-020-03557-8

45. Ivanisenko T.V., Demenkov P.S., Kolchanov N.A., Ivanisenko V.A. The new version of the ANDDigest tool with improved AI-based short names recognition. Int. J. Mol. Sci. 2022;23(23):14934. DOI 10.3390/ijms232314934

46. Ivanisenko V.A., Saik O.V., Ivanisenko N.V., Tiys E.S., Ivanisenko T.V., Demenkov P.S., Kolchanov N.A. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology. BMC Syst Biol. 2015;9(Suppl.2):S2. DOI 10.1186/1752-0509-9-S2-S2

47. Ivanisenko V.A., Demenkov P.S., Ivanisenko T.V., Mishchenko E.L., Saik O.V. A new version of the ANDSystem tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression. BMC Bioinformatics. 2019; 20(Suppl.1):34. DOI 10.1186/s12859-018-2567-6

48. Ivanisenko V.A., Gaisler E.V., Basov N.V., Rogachev A.D., Cheresiz S.V., Ivanisenko T.V., Demenkov P.S., Mishchenko E.L., Khripko O.P., Khripko Y.I., Voevoda S.M. Plasma metabolomics and gene regulatory networks analysis reveal the role of nonstructural SARSCoV-2 viral proteins in metabolic dysregulation in COVID-19 patients. Sci. Rep. 2022;12(1):19977. DOI 10.1038/s41598-022-24170-0

49. Kiuchi N., Nakajima K., Ichiba M., Fukada T., Narimatsu M., Mizuno K., Hibi M., Hirano T. STAT3 is required for the gp130-mediated full activation of the c-myc gene. J. Exp. Med. 1999;189(1):63-73. DOI 10.1084/jem.189.1.63

50. Kolmykov S., Yevshin I., Kulyashov M., Sharipov R., Kondrakhin Y., Makeev V.J., Kulakovskiy I.V., Kel A., Kolpakov F. GTRD: an integrated view of transcription regulation. Nucleic Acids Res. 2021; 49(D1):D104-D111. DOI 10.1093/nar/gkaa1057

51. Kong L., Fujimoto A., Nakamura M., Aoyagi H., Matsuda M., Watashi K., Suzuki R., Arita M., Yamagoe S., Dohmae N., Suzuki T., Sakamaki Y., Ichinose S., Suzuki T., Wakita T., Aizaki H. Prolactin regulatory element binding protein is involved in hepatitis C virus replication by interaction with NS4B. J. Virol. 2016;90(6):3093-3111. DOI 10.1128/JVI.01540-15

52. LaPointe P., Gurkan C., Balch W.E. Mise en place – this bud’s for the Golgi. Mol. Cell. 2004;14(4):413-414. DOI 10.1016/s1097-2765(04)00267-9

53. Lee J.S., Tabata K., Twu W.-I., Rahman M.S., Kim H.S., Yu J.B., Jee M.H., Bartenschlager R., Jang S.K. RACK1 mediates rewiring of intracellular networks induced by hepatitis C virus infection. PLoS Pathog. 2019;15(9):e1008021. DOI 10.1371/journal.ppat.1008021

54. Machida K., Cheng K.T., Lai C.K., Jeng K.S., Sung V.M., Lai M.M. Hepatitis C virus triggers mitochondrial permeability transition with production of reactive oxygen species, leading to DNA damage and STAT3 activation. J. Virol. 2006;80(14):7199-7207. DOI 10.1128/jvi.00321-06

55. Manna D., Aligo J., Xu C., Park W.S., Koc H., Heo W.D., Konan K.V. Endocytic Rab proteins are required for hepatitis C virus replication complex formation. Virology. 2010;398(1):21-37. DOI 10.1016/j.virol.2009.11.034

56. Moradpour D., Penin F., Rice C.M. Replication of hepatitis C virus. Nat. Rev. Microbiol. 2007;5(6):453-463. DOI 10.1038/nrmicro1645

57. Papic N., Maxwell C.I., Delker D.A., Liu S., Bret S.E., Heale B.S.E., Hagedorn C.H. RNA-sequencing analysis of 5′ capped RNAs identifies many new differentially expressed genes in acute hepatitis C virus infection. Viruses. 2012;4(4):581-612. DOI 10.3390/v4040581

58. Powdrill M.H., Tchesnokov E.P., Kozak R.A., Russell R.S., Martin R., Svarovskaia E.S., Mo H., Kouyos R.D., Gotte M. Contribution of a mutational bias in hepatitis C virus replication to the genetic barrier in the development of drug resistance. Proc. Natl. Acad. Sci. USA. 2011;108(51):20509-20513. DOI 10.1073/pnas.1105797108

59. Reiss S., Rebhan I., Backes P., Romero-Brey I., Erfle H., Matula P., Kaderali L., Poenisch M., Blankenburg H., Hiet M.S., Longerich T., Diehl S., Ramirez F., Balla T., Rohr K., Kaul A., Buhler S., Pepperkok R., Lengauer T., Albrecht M., Eils R., Schirmacher P., Lohmann V., Bartenschlager R. Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment. Cell Host Microbe. 2011; 9(1):32-45. DOI 10.1016/j.chom.2010.12.002

60. Saik O.V., Ivanisenko T.V., Demenkov P.S., Ivanisenko V.A. Interactome of the hepatitis C virus: literature mining with ANDSystem. Virus Res. 2016;218:40-48. DOI 10.1016/j.virusres.2015.12.003

61. Saik O.V., Demenkov P.S., Ivanisenko T.V., Bragina E.Y., Freidin M.B., Dosenko V.E., Zolotareva O.I., Choynzonov E.L., Hofestaedt R., Ivanisenko V.A. Search for new candidate genes involved in the comorbidity of asthma and hypertension based on automatic analysis of scientific literature. J. Integr. Bioinform. 2018a;15(4):20180054. DOI 10.1515/jib-2018-0054

62. Saik O.V., Demenkov P.S., Ivanisenko T.V., Bragina E.Y., Freidin M.B., Goncharova I.A., Dosenko V.E., Zolotareva O.I., Hofestaedt R., Lavrik I.N., Rogaev E.I. Novel candidate genes important for asthma and hypertension comorbidity revealed from associative gene networks. BMC Med. Genomics. 2018b;11(1):61-76. DOI 10.1186/s12920-018-0331-4

63. Saik O.V., Nimaev V.V., Usmonov D.B., Demenkov P.S., Ivanisenko T.V., Lavrik I.N., Ivanisenko V.A. Prioritization of genes involved in endothelial cell apoptosis by their implication in lymphedema using an analysis of associative gene networks with ANDSystem. BMC Med. Genomics. 2019;12(Suppl.2):117-131. DOI 10.1186/s12920-019-0492-9

64. Salloum S., Wang H., Ferguson C., Parton R.G., Tai A.W. Rab18 binds to hepatitis C virus NS5A and promotes interaction between sites of viral replication and lipid droplets. PLoS Pathog. 2013;9(8): e1003513. DOI 10.1371/journal.ppat.1003513

65. Tan Y., Li Y. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1. Biochem. Biophys. Res. Commun. 2015;466(3):592-598. DOI 10.1016/j.bbrc.2015.09.091

66. Xiong J., Wang L., Fei X.C., Jiang X., Zheng Z., Zhao Y., Wang C., Li B., Chen S., Janin A., Gale R.P., Zhao W. MYC is a positive regulator of choline metabolism and impedes mitophagy-dependent necroptosis in diffuse large B-cell lymphoma. Blood Cancer J. 2017;7(7):e582. DOI 10.1038/bcj.2017.61

67. Xu S., Pei R., Guo M., Han Q., Lai J., Wang Y., Wu C., Zhou Y., Lu M., Chen X. Cytosolic phospholipase A2 gamma is involved in hepatitis C virus replication and assembly. J. Virol. 2012;86(23):13025-13037. DOI 10.1128/JVI.01785-12

68. Xue Y.K., Tan J., Dou D.W., Chen D., Chen L.J., Ren H.P., Chen L.B., Xiong X.G., Zheng H. Effect of Kruppel-like factor 4 on Notch pathway in hepatic stellate cells. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2016;36(6):811-816. DOI 10.1007/s11596-016-1667-7

69. Yamane D., McGivern D.R., Masaki T., Lemon S.M. Liver injury and disease pathogenesis in chronic hepatitis C. Curr. Top. Microbiol. Immunol. 2013;369:263-288. DOI 10.1007/978-3-642-27340-7_11

70. Yankina M.A., Saik O.V., Ivanisenko V.A., Demenkov P.S., Khusnutdinova E.K. Evaluation of prioritization methods of extrinsic apoptotic signaling pathway genes for retrieval of the new candidates associated with major depressive disorder. Russ. J. Genet. 2018; 54(11):1366-1374. DOI 10.1134/S1022795418110170

71. Yevshin I., Sharipov R., Valeev T., Kel A., Kolpakov F. GTRD: a data- base of transcription factor binding sites identified by ChIP-seq experiments. Nucleic Acids Res. 2017;45(D1):D61-D67. DOI 10.1093/nar/gkw951

72. Zong Y., Panikkar A., Xu J., Antoniou A., Raynaud P., Lemaigre F., Stanger B.Z. Notch signaling controls liver development by regulating biliary differentiation. Development. 2009;136(10):1727-1739. DOI 10.1242/dev.029140


Review

Views: 460


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)