Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Application of the weighted histogram method for calculating the thermodynamic parameters of the formation of oligodeoxyribonucleotide duplexes

https://doi.org/10.18699/VJGB-23-93

Abstract

To date, many derivatives and analogs of nucleic acids (NAs) have been developed. Some of them have found uses in scientific research and biomedical applications. Their effective use is based on the data about their properties. Some of the most important physicochemical properties of oligonucleotides are thermodynamic parameters of the formation of their duplexes with DNA and RNA. These parameters can be calculated only for a few NA derivatives: locked NAs, bridged oligonucleotides, and peptide NAs. Existing predictive approaches are based on an analysis of experimental data and the consequent construction of predictive models. The ongoing pilot studies aimed at devising methods for predicting the properties of NAs by computational modeling techniques are based only on knowledge about the structure of oligonucleotides. In this work, we studied the applicability of the weighted histogram analysis method (WHAM) in combination with umbrella sampling to the calculation of thermodynamic parameters of DNA duplex formation (changes in enthalpy ∆H°, entropy ∆S°, and Gibbs free energy          ∆G37° ). A procedure was designed involving WHAM for calculating the hybridization properties of oligodeoxyribonucleotides. Optimal parameters for modeling and calculation of thermodynamic parameters were determined. The feasibility of calculation of ∆H°, ∆S°, and          ∆G37° was demonstrated using a representative sample of 21 oligonucleotides 4–16 nucleotides long with a GC content of 14–100 %. Error of the calculation of the thermodynamic parameters was 11.4, 12.9, and 11.8 % for ∆H°, ∆S°, and          ∆G37° , respectively, and the melting temperature was predicted with an average error of 5.5 °C. Such high accuracy of computations is comparable with the accuracy of the experimental approach and of other methods for calculating the energy of NA duplex formation. In this paper, the use of WHAM for computation of the energy of DNA duplex formation was systematically investigated for the first time. Our results show that a reliable calculation of the hybridization parameters of new NA derivatives is possible, including derivatives not yet synthesized. This work opens up new horizons for a rational design of constructs based on NAs for solving problems in biomedicine and biotechnology.

About the Authors

I. I. Yushin
Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



V. M. Golyshev
Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



D. V. Pyshnyi
Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



A. A. Lomzov
Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



References

1. Banerjee D., Tateishi-Karimata H., Ohyama T., Ghosh S., Endoh T., Takahashi S., Sugimoto N. Improved nearest-neighbor parameters for the stability of RNA/DNA hybrids under a physiological condition. Nucleic Acids Res. 2020;48(21):12042-12054. DOI 10.1093/nar/gkaa572

2. Cantor C.R., Schimmel P.R. Biophysical Chemistry. Part I: The Conformation of Biological Macromolecules. New York: W.H. Freeman & Company, 1980

3. Case D.A., Walker R.C., Cheatham T.E., Simmerling C., Roitberg A., Merz K.M., Luo R., Darden T. Amber 18. Reference Manual. San Francisco: Univ. of California, 2018

4. Chen H., Meisburger S.P., Pabit S.A., Sutton J.L., Webb W.W., Pollack L. Ionic strength-dependent persistence lengths of singlestranded RNA and DNA. Proc. Natl. Acad. Sci. USA. 2012;109(3): 799-804. DOI 10.1073/pnas.1119057109

5. Dowerah D., Uppuladinne M.V.N., Sarma P.J., Biswakarma N., Sonavane U.B., Joshi R.R., Ray S.K., Namsa N.D., Deka R.C. Design of LNA analogues using a combined density functional theory and molecular dynamics approach for RNA therapeutics. ACS Omega. 2023;8(25):22382-22405. DOI 10.1021/acsomega.2c07860

6. Eckstein F. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther. 2014;24(6):374-387. DOI 10.1089/nat.2014.0506

7. Golyshev V.M., Pyshnyi D.V., Lomzov A.A. Calculation of energy for RNA/RNA and DNA/RNA duplex formation by molecular dynamics simulation. Mol. Biol. 2021;55(6):927-940. DOI 10.1134/S002689332105006X

8. Griffin T.J., Smith L.M. An approach to predicting the stabilities of peptide nucleic acid:DNA duplexes. Anal. Biochem. 1998;260(1): 56-63. DOI 10.1006/abio.1998.2686

9. Grossfield A. WHAM: the weighted histogram analysis method. 2018. Kumar S., Rosenberg J.M., Bouzida D., Swendsen R.H., Kollman P.A. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 1992; 13(8):1011-1021. DOI 10.1002/jcc.540130812

10. Kurus N.N., Dultsev F.N. Determination of the thermodynamic parameters of DNA double helix unwinding with the help of mechanical methods. ACS Omega. 2018;3(3):2793-2797. DOI 10.1021/acsomega.7b01815

11. Lomzov A.A., Pyshnyi D.V. Considering the oligonucleotide secondary structures in thermodynamic and kinetic analysis of DNA duplex formation. Biophysics (Oxf ). 2012;57(1):19-34. DOI 10.1134/S0006350912010137

12. Lomzov A.A., Pyshnaya I.A., Ivanova E.M., Pyshnyi D.V. Thermodynamic parameters for calculating the stability of complexes of bridged oligonucleotides. Dokl. Biochem. Biophys. 2006;409(1): 211-215. DOI 10.1134/S1607672906040053

13. Lomzov A.A., Vorobjev Y.N., Pyshnyi D.V. Evaluation of the Gibbs free energy changes and melting temperatures of DNA/DNA duplexes using hybridization enthalpy calculated by molecular dynamics simulation. J. Phys. Chem. B. 2015;119(49):15221-15234. DOI 10.1021/acs.jpcb.5b09645

14. McTigue P.M., Peterson R.J., Kahn J.D. Sequence-dependent thermodynamic parameters for locked nucleic acid (LNA)-DNA duplex formation. Biochemistry. 2004;43(18):5388-5405. DOI 10.1021/bi035976d

15. Mosayebi M., Louis A.A., Doye J.P.K., Ouldridge T.E. Force-induced rupture of a DNA duplex: from fundamentals to force sensors. ACS Nano. 2015;9(12):11993-12003. DOI 10.1021/acsnano.5b04726

16. Omelyan I., Kovalenko A. Generalised canonical-isokinetic ensemble: speeding up multiscale molecular dynamics and coupling with 3D molecular theory of solvation. Mol. Simul. 2013;39(1):25-48. DOI 10.1080/08927022.2012.700486

17. Pérez A., Marchán I., Svozil D., Sponer J., Cheatham T.E., Laughton C.A., Orozco M. Refinement of the AMBER force field for nucleic acids: Improving the description of α/γ conformers. Biophys. J. 2007;92(11):3817-3829. DOI 10.1529/biophysj.106.097782

18. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera – a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25(13):1605-1612. DOI 10.1002/jcc.20084

19. SantaLucia J., Hicks D. The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct. 2004;33(1):415-440. DOI 10.1146/annurev.biophys.32.110601.141800

20. Sugimoto N., Nakano S., Katoh M., Matsumura A., Nakamuta H., Ohmichi T., Yoneyama M., Sasaki M. Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry. 1995;34(35):11211-11216. DOI 10.1021/bi00035a029

21. Summerton J., Weller D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev. 1997; 7(3):187-195. DOI 10.1089/oli.1.1997.7.187

22. Tsui V., Case D.A. Theory and applications of the generalized born solvation model in macromolecular simulations. Biopolymers. 2000; 56(4):275-291. DOI 10.1002/1097-0282(2000)56:4<275::AID-BIP10024>3.0.CO;2-E

23. Volkov S.N., Solov’yov A.V. The mechanism of DNA mechanical unzipping. Eur. Phys. J. D. 2009;54(3):657-666. DOI 10.1140/epjd/e2009-00194-5

24. Wang F., Li P., Chu H.C., Lo P.K. Nucleic acids and their analogues for biomedical applications. Biosensors. 2022;12(2):93. DOI 10.3390/bios12020093

25. Xia T., SantaLucia J., Burkard M.E., Kierzek R., Schroeder S.J., Jiao X., Cox C., Turner D.H. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson–Crick base pairs. Biochemistry. 1998;37(42):14719-14735. DOI 10.1021/bi9809425


Review

Views: 444


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)