Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Molecular-genetic and cytogenetic analyses of cotton chromosome introgression from Gossypium barbadense L. into the genome of G. hirsutum L. in BC2F1 hybrids

https://doi.org/10.18699/VJGB-23-110

Abstract

Substitution lines of the cotton Gossypium hirsutum L. involving chromosomes of the tetraploid species G. bar ba dense L., G. tomentosum Nutt. ex Seem., and G. mustelinum Miers ex Watt. are a valuable source for breeding, increasing the genetic diversity of G. hirsutum. The substitution of certain G. hirsutum L. chromosomes with G. barbadense chromosomes affect fibre elongation, fibre yield, fibre strength, and micronaire. To increase the efficiency of creating lines, it is necessary to study the nature of the introgression of alien chromosomes into the G. hirsutum L. genome. As a result of molecular genetic analysis of BC2F1 hybrids obtained from crossing monosomic lines of the cotton G. hirsutum from the cytogenetic collection of Uzbekistan with monosomic backcross hybrids BC1F1 G. hirsutum × G. barbadense on the same chromosomes, genetic differences between the hybrids in the profile of chromosome-specific microsatellite SSR markers were found. The predominant introgression of chromosomes 4, 6 and 12 of the At-subgenome and 22 of the Dt-subgenome of G. barbadense was revealed, while chromosomes 2 and 7 of the At-subgenome and 18 of the Dt- subgenome of G. barbadense were characterized by elimination. Among them, chromosomes 7 of the At- sub genome and 18 of the Dt-subgenome of G. barbadense were eliminated in the first backcross generation. In this work, two lines, CS- B06 and CS-B07, from the American cytogenetic collection with a putative substitution involving chromosomes 6 and 7 of the At-subgenome were analysed. The presence of only polymorphic alleles from the species G. hirsutum and the absence of polymorphic alleles from the species G. barbadense were revealed, which showed the absence of substitution involving these chromosomes. BC2F1 hybrids with monosomy for both G. barbadense and G. hirsutum chromosomes were characterized by regular pairing of chromosomes and high meiotic indexes. However, many hybrids were characterized by a decrease in pollen fertility. Two hybrids with monosomy for chromosome 7 of the At-subgenome of G. hirsutum and chromosome 6 of the At-subgenome of G. barbadense had the greatest reduction in pollen viability (70.09 ± 1.57 and 75.00 ± 1.66 %, respectively). Thus, this work shows a specific feature in the introgression of individual chromosomes of the cotton species G. barbadense into the cotton G. hirsutum genome.

About the Authors

M. F. Sanamyan
National University of Uzbekistan named after Mirzo Ulugbek
Uzbekistan

Tashkent



Sh. U. Bobokhujayev
National University of Uzbekistan named after Mirzo Ulugbek
Uzbekistan

Tashkent



Sh. S. Abdukarimov
Center of Genomics and Bioinformatics of the Academy of Sciences of the Republic of Uzbekistan
Uzbekistan

Tashkent



O. G. Silkova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



References

1. Anwar M., Iqbal M.Z., Abro A.A., Memon S., Bhutto L.A., Memon S.A., Peng Y. Inter-specific hybridization in cotton (Gossypium hirsutum) for crop improvement. Agronomy. 2022;12(12):3158. DOI 10.3390/agronomy12123158

2. Badaeva E.D., Ruban A.S., Shishkina A.A., Sibikeev S.N., Druzhin A.E., Surzhikov S.A., Dragovich A.Yu. Genetic classification of Aegilops columnaris Zhuk. (2n = 4x = 28, UcUcXcXc) chromosomes based on FISH analysis and substitution patterns in common wheat × Ae. columnaris introgressive lines. Genome. 2018;61(2):131-143. DOI 10.1139/gen-2017-0186

3. Brown M.S., Endrizzi J.E. The origin, fertility and transmission of monosomics in Gossypium. Am. J. Bot. 1964;51(1):108-115. DOI 10.2307/2440070

4. Chen Z.J., Sreedasyam A., Ando A., Song Q., De Santiago L.M., HulseKemp A.M., Ding M., Ye W., Kirkbride R.C., Jenkins J., Plott Ch., Lovell J., Lin Yu-M., Vaughn R., Liu B., Simpson Sh., Scheffler B.E., Wen L., Saski Ch.A., Grover C.E., Hu G., Conover J.L., Carlson J.W., Shu Sh., Boston L.B., Williams M., Peterson D.G., McGee K., Jones D.C., Wendel J.F., Stelly D.M., Grimwood J., Schmutz J. Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nat. Genet. 2020;52(5):525-533. DOI 10.1038/s41588-020-0614-5

5. Cui X., Liu F., Liu Yu., Zhou Zh., Zhao Y., Wang C.H., Wang X., Cai X., Wang Y., Meng F., Peng R., Wang K. Construction of cytogenetic map of Gossypium herbaceum chromosome 1 and its integration with genetic maps. Mol. Cytogenet. 2015;8(1):2. DOI 10.1186/s13039-015-0106-y

6. Gan Y., Liu F., Peng R., Wang Ch., Li Sh., Zhang X., Wang Yu., Wang K. Individual chromosome identification, chromosomal collinearity and genetic-physical integrated map in Gossypium darwinii and four D genome cotton species revealed by BAC-FISH. Genes Genet. Syst. 2012;87(4):233-241. DOI 10.1266/ggs.87.233

7. Davoyan R.O., Bebyakina I.V., Davoyan E.R., Mikov D.S., Zuba nova Yu.S., Boldakov D.M., Badaeva E.D., Adonina I.G., Salina E.A., Zinchenko A.N. The development and study of common wheat introgression lines derived from the synthetic form RS7. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Gen e tics and Breeding. 2019;23(7):827-835. DOI 10.18699/VJ19.556 (in Russian)

8. Dellaporta S.J., Wood J., Hicks J.B. A plant DNA mini preparation: version II. Plant Mol. Biol. Rep. 1983;1(4):19-21. DOI 10.1007/BF02712670

9. Dospekhov B.A. Methodology of Field Experience (with the Basics of Statistical Processing of Research Results). Moscow: Agropromizdat Publ., 1985 (in Russian)

10. Endrizzi J.E., Turcotte E.L., Kohel R.J. Genetics, cytology and evolution of Gossypium. Adv. Genet. 1985;23:271-375. DOI 10.1016/S0065-2660(08)60515-5

11. Fang D.D., Thyssen G.N., Wang M., Jenkins J.N., McCarty J.C., Jones D.C. Genomic confirmation of Gossypium barbadense introgression into G. hirsutum and a subsequent MAGIC population. Mol. Genet. Genomics. 2023;298(1):143-152. DOI 10.1007/s00438-022-01974-3

12. Garg M., Tsujimoto H., Gupta R.K., Kumar A., Kaur N., Kumar R. Chromosome specific substitution lines of Aegilops geniculate alter parameters of bread making quality of wheat. PLoS One. 2016; 11(10):e0162350. DOI 10.1371/journal.pone.0162350

13. Guo Yu., Saha S., Yu J.Z., Jenkins J.N., Kohel R.J., Scheffler B.E., Stelly D.M. BAC-derived SSR markers chromosome locations in cotton. Euphytica. 2008;161:361-370. DOI 10.1007/s10681-0079585-1

14. Gutiérrez O.A., Stelly D.M., Saha S., Jenkins J.N., McCarty J.C., Raska D.A., Scheffler B.E. Integrative placement and orientation of nonredundant SSR loci in cotton linkage groups by deficiency anal ysis. Mol. Breeding. 2009;23:693-707. DOI 10.1007/s11032-009-9266-y

15. Grover C.E., Arick M.A., Thrash A., Sharbrough J., Hu G., Yuan D., Snodgrass S., Miller E.R., Ramaraj T., Peterson D.G., Udall J.A., Wendel J.F. Dual domestication, diversity, and differential introgression in Old World cotton diploids. Genome Biol. Evol. 2022;14(12): evac170. DOI 10.1093/gbe/evac170

16. Hoffman S.M., Yu J.Z., Grum D.S., Xiao J., Kohel R.J., Pepper A.E. Identification of 700 new microsatellite loci from cotton (G. hirsutum L.). J. Cotton Sci. 2007;11:208-241

17. Hulse-Kemp A.M., Lemm J., Plieske J., Ashrafi H., Buyyarapu R., Fang D.D., Frelichowski J., Giband M., Hague S., Hinze L.L., Kochan K.J., Riggs P.K., Scheffler J.A., Udall J.A., Ulloa M., Wang S.S., Zhu Q.H., Bag S.K., Bhardwaj A., Burke J.J., Byers R.L., Clave rie M., Gore M.A., Harker D.B., Islam M.S., Jenkins J.N., Jones D.C., Lacape J.M., Llewellyn D.J., Percy R.G., Pepper A.E., Poland J.A., Mohan Rai K., Sawant S.V., Singh S.K., Spriggs A., Taylor J.M., Wang F., Yourstone S.M., Zheng X., Lawley C.T., Ganal M.W., Van Deynze A., Wilson I.W., Stelly D.M. Development of a 63K SNP array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp. G3. 2015;5(6): 1187-1209. DOI 10.1534/g3.115.018416

18. International Cotton Advisory Committee-ICAC-2019. https://www.researchgate.net/publication/228581277_International_Cotton_Advisory_Committee

19. International Cotton Advisory Committee-ICAC-2021. https://www.icac.org

20. Jenkins J.N., Wu J., McCarty J.C., Saha S., Gutiérrez O., Hayes R., Stelly D.M. Genetic effects of thirteen Gossypium barbadense L. chromosome substitution lines in top crosses with upland cotton cultivars: I. Yield and yield components. Crop Sci. 2006;46(3): 1169-1178. DOI 10.2135/cropsci2005.08-0269

21. Jenkins J.N., McCarty J.C., Wu J., Saha S., Gutierrez О., Hayes R., Stelly D.M. Genetic effects of thirteen Gossypium barbadense L. chromosome substitution lines in top crosses with upland cotton cultivars: II. Fiber quality traits. Crop Sci. 2007;47(2):561-570. DOI 10.2135/cropsci2006.06.0396

22. Krasilova N.M., Adonina I.G., Silkova O.G., Shumny V.K. Transmission of rye chromosome 2R in backcrosses of wheat-rye 2R(2D) substitution lines to various common wheat varieties. Vavilovskii Zhur nal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2011;15(3):554-562 (in Russian)

23. Lacape J.M., Jacobs J., Arioli T., Derijcker R., Forestier C.N., Llewellyn D., Jean J., Thomas E., Viot C. A new interspecific, Gossypium hirsutum × G. barbadense, RIL population: towards a unified consensus linkage map of tetraploid cotton. Theor. Appl. Genet. 2009; 119(2):281-292. DOI 10.1007/s00122-009-1037-y

24. Liu S., Saha S., Stelly D.M., Burr B., Cantrell R.G. Chromosomal assignment of microsatellite loci in cotton. J. Hered. 2000;91(4): 326-332. DOI 10.1093/jhered/91.4.326

25. Rawat N., Neelam K., Tiwari V.K., Randhawa G.S., Friebe B., Gill B.S., Dhaliwal H.S. Development and molecular characterization of wheat – Aegilops kotschyi addition and substitution lines with high grain protein, iron, and zinc. Genome. 2011;54(11):943-953. DOI 10.1139/G11-059

26. Reddy K.R., Bheemanahalli R., Saha S., Singh K., Lokhande S.B., Gajanayake B., Read J.J., Jenkins J.N., Raska D.A., Santiago L.M., Hulse-Kemp A.M., Vaughn R.N., Stelly D.M. High-temperature and drought-resilience traits among interspecific chromosome substitution lines for genetic improvement of upland cotton. Plants. 2020; 9(12):1747. DOI 10.3390/plants9121747

27. Saha S., Wu J., Jenkins J.N., McCarty J.C. Jr., Gutierrez O.A., Stelly D.M., Percy R.G., Raska D.A. Effect of chromosome substitutions from Gossypium barbadense L. 3-79 into G. hirsutum L. TM-1 on agronomic and fiber traits. J. Cotton Sci. 2004;8(3):162-169

28. Saha S., Raska D.A., Stelly D.M. Upland cotton (Gossypium hirsutum L.) × Hawaiian cotton (G. tomentosum Nutt. ex Seem.) F1 hybrid hypoaneuploid chromosome substitution series. J. Cotton Sci.

29. ;10(4):263-272

30. Saha S., Wu J., Jenkins J.N., McCarty J.C., Hayes R., Stelly D.M. Genetic dissection of chromosome substitution lines of cotton to discover novel Gossypium barbadense L. alleles for improvement of agronomic traits. Theor. Appl. Genet. 2010;120(6):1193-1205. DOI 10.1007/s00122-009-1247-3

31. Saha S., Raska D.A., Stelly D.M., Manchali Sh., Gutierrez O.A. Hypoaneuploid chromosome substitution F1 hybrids of Gossypium hirsutum L. × G. mustelinum Miers ex Watt. J. Cotton Sci. 2013;17(2): 102-114

32. Saha S., Stelly D.M., Makamov A.K., Ayubov M.S., Raska D., Gutiérrez O.A., Shivapriya M., Jenkins J.N., Dewayne D., Abdurakhmonov I.Y. Molecular confirmation of Gossypium hirsutum chromosome substitution lines. Euphytica. 2015;205:459-473. DOI 10.1007/s10681-015-1407-2

33. Saha S., Jenkins J.N., McCarty J.C., Hayes R.W., Stelly D.M., Campbell B.T. Registration of two CS-B17-derived Upland cotton recombinant inbred lines with improved fiber micronaire. J. Plant Regist. 2018;12(1):97-100. DOI 10.3198/jpr2015.09.0061crg

34. Saha S., Bellaloui N., Jenkins J.N., McCarty J.C., Stelly D.M. Effect of chromosome substitutions from Gossypium barbadense L., G. tomentosum Nutt. ex Seem and G. mustelinum Watt into G. hirsutum L. on cotton seed protein and oil content. Euphytica. 2020;216: 118. DOI 10.1007/s10681-020-02644-4

35. Sanamyan M.F. Cytogenetics of Mutations, Translocations, Monosomy and Interspecific Hybridization in Cotton. Tashkent: University Publ., 2020 (in Russian)

36. Sanamyan M.F., Bobokhujayev Sh.U. Identification of univalent chromosomes in monosomic lines of cotton (Gossypium hirsutum L.) by means of cytogenetic markers. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(7):836845. DOI 10.18699/VJ19.557 (in Russian)

37. Sanamyan М.F., Petlyakova J., Rakhmatullina E.M., Sharipova E. Cytogenetic collection of Uzbekistan. In: Abdurakhmonov I.Y. (Ed.). World Cotton Germplasm Resources. InTech, 2014;247-287. DOI 10.5772/58589

38. Sanamyan M.F., Bobokhujaev Sh.U., Makamov A.X., Achilov S.G., Abdurakhmonov I.Y. The creation of new aneuploid lines of the cotton (Gossypium hirsutum L.) with identification of chromosomes by translocation and SSR markers. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016a;20(5): 643-652. DOI 10.18699/VJ16.186 (in Russian)

39. Sanamyan M.F., Makamov A.K., Bobokhujaev Sh.U., Usmonov D.E., Buriev Z.T., Saha S., Stelly D.M. The Utilization of translocation lines and microsatellite markers for the identification of unknown cotton monosomic lines. In: Abdurakhmonov I.Y. (Ed.). Cotton Research. InTech, 2016b;167-183. DOI 10.5772/64558

40. Sanamyan M.F., Bobokhujaev Sh.U., Abdukarimov Sh.S., Makamov Kh.A., Silkova O.G. Features of chromosome introgression from Gossypium barbadense L. into G. hirsutum L. during the development of alien substitution lines. Plants. 2022;11(4):542. DOI 10.3390/plants11040542

41. Sarr D., Lacape J.-M., Rodier-Goud M., Jacquemi N.J.-M., Benbouza H., Toussaint A., Palm R., Ahoton L., Baudoin J.-P., Mergeai G. Isolation of five new monosomic alien addition lines of Gossypium australe F. Muellin G. hirsutum L. by SSR and GISH analyses. Plant Breed. 2011;130(1):60-66. DOI 10.1111/j.1439-0523.2010.01819.x

42. Schneider A., Molnár I., Molnár-Láng M. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica. 2008;163(1):1-19. DOI 10.1007/s10681-007-9624-y

43. Schneider A., Molnár I., Molnár-Láng M. Selection of U and M genome-specific wheat SSR markers using wheat–Aegilops biuncialis and wheat–Ae. geniculate addition lines. Euphytica. 2010;175:357-364. DOI 10.1007/s10681-010-0180-5

44. Shchapova A., Kravtsova L. The production of wheat-rye substitution lines by using the Giemsa staining technique. Cereal Res. Commun. 1982;10(1-2):33-39

45. Shishkina A.A., Dragovich A.Yu., Rouban A.S., Sibikeev S.N., Druzhin A.E., Badaeva E.D. Development of the genetic classification of Aegilops columnaris Zhuk. chromosomes based on the analysis of introgression lines Triticum aestivum × Ae. columnaris. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genet ics and Breeding. 2017;21(2):241-249. DOI 10.18699/VJ17.243 (in Russian)

46. Si Z., Chen H., Zhu X., Cao Z., Zhang T. Genetic dissection of lint yield and fiber quality traits of G. hirsutum in G. barbadense background. Mol. Breed. 2017;37:9. DOI 10.1007/s11032-016-0607-3

47. Silkova O.G., Dobrovolskaya O.B., Adonina I.G., Kravtsova L.A., Sali na E.A., Shchapova A.I., Shumny V.K., Dubovets N.I., Roeder M.S. Production of wheat-rye substitution lines and identification of chromosome composition of karyotypes using C-banding, GISH, and SSR markers. Russ. J. Genet. 2006;42(6):645-653. DOI 10.1134/S1022795406060093

48. Silkova O.G., Dobrovolskaya O.B., Dubovets N.I., Adonina I.G., Krav tsova L.A., Shchapova A.I., Shumny V.K. Production of wheatrye substitution lines based on winter rye cultivars with karyotype identification by means of C-banding, GISH, and SSR markers. Russ. J. Genet. 2007;(43)8:957-960. DOI 10.1134/S1022795407080200

49. Stelly D.M., Saha S., Raska D.A., Jenkins J.N., McCarty J.C. Jr., Gutiérrez O.A. Registration of 17 upland (Gossypium hirsutum) cotton germplasm lines disomic for different G. barbadense chromosome or arm substitutions. Crop Sci. 2005;45(6):2663-2665. DOI 10.2135/cropsci2004.0642

50. Tiwari V.K., Rawat N., Neelam K., Kumar S., Randhawa G.S., Harcharan S.D. Substitutions of 2S and 7U chromosomes of Aegilops kotschyi in wheat enhance grain iron and zinc concentration. Theor. Appl. Genet. 2010;121(2):259-269. DOI 10.1007/s00122-010-1307-8

51. Ulloa M., Wang C., Saha S., Hutmacher R.B., Stelly D.M., Jenkins J.N., Burke J., Roberts P.A. Analysis of root-knot nematode and fusarium wilt disease resistance in cotton (Gossypium spp.) using chromo- some substitution lines from two alien species. Genetica. 2016; 144(2):167-179. DOI 10.1007/s10709-016-9887-0

52. Wang B., Liu L., Zhang D., Zhuang Zh., Guo Hui., Qiao Xin., Wei L., Rong J.O., May L., Paterson A.H., Chee P.W. A genetic map between Gossypium hirsutum and the Brazilian endemic G. mustelinum and its application to QTL mapping. G3. 2016;6(6):1673-1685. DOI 10.1534/g3.116.029116

53. Wendel J.F., Brubaker C.L., Alvarez I., Cronn R., Stewart J.M. Evolution and natural history of the cotton genus. In: Paterson A.H. (Ed.). Genetics and Genomics of Cotton, Plant Genetics and Genomics: Crops and Models. Vol. 3. New York: Springer, 2009;3-22. DOI 10.1007/978-0-387-70810-2_1

54. Zhang J., Percy R.G., McCarty J.C. Introgression genetics and breeding between Upland and Pima cotton: a review. Euphytica. 2014;98: 1-12. DOI 10.1007/s10681-014-1094-4


Review

Views: 439


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)