Inactivation of the TIM complex components leads to a decrease in the level of DNA import into Arabidopsis mitochondria
https://doi.org/10.18699/VJGB-23-112
Abstract
The phenomenon of DNA import into mitochondria has been shown for all major groups of eukaryotes. In plants and animals, DNA import seems to occur in different ways. It has been known that nucleic acids enter plant organelles through alternative channels, depending on the size of the imported molecules. Mitochondrial import of small DNA (up to 300 bp) partially overlaps with the mechanism of tRNA import, at least at the level of the outer membrane. It is noteworthy that, in plants, tRNA import involves components of the protein import apparatus, whose role in DNA transport has not yet been studied. In this work, we studied the role of individual components of the TIM inner membrane translocase in the process of DNA import into isolated Arabidopsis mitochondria and their possible association with the porin VDAC1. Using knockout mutants for the genes encoding Tim17 or Tim23 protein isoforms, we demonstrated for the first time the involvement of these proteins in the import of DNA fragments of different lengths. In addition, inhibition of transport channels with specific antibodies to VDAC1 led to a decrease in the level of DNA import into wild-type mitochondria, which made it possible to establish the specific involvement of this porin isoform in DNA import. In the tim17-1 knockout mutant, there was an additional decrease in the efficiency of DNA import in the presence of antibodies to VDAC1 compared to the wild type line. The results obtained indicate the involvement of the Tim17-1 and Tim23-2 proteins in the mechanism of DNA import into plant mitochondria. At the same time, Tim23-2 may be part of the channel formed with the participation of VDAC1, while Tim17-1, apparently, is involved in an alternative DNA import pathway independent of VDAC1. The identification of membrane carrier proteins involved in various DNA import pathways will make it possible to use the natural ability of mitochondria to import DNA as a convenient biotechnological tool for transforming the mitochondrial genome.
Keywords
About the Authors
T. A. TarasenkoRussian Federation
Irkutsk
K. D. Elizova
Russian Federation
Irkutsk
V. I. Tarasenko
Russian Federation
Irkutsk
M. V. Koulintchenko
Russian Federation
Irkutsk
Kazan
Yu. M. Konstantinov
Russian Federation
Irkutsk
References
1. Fuchs P., Rugen N., Carrie C., Elsasser M., Finkemeier I., Giese J., Hildebrandt T.M., Kuhn K., Maurino V.G., Ruberti C., Schallenberg-Rüdinger M., Steinbeck J., Braun H.P., Eubel H., Meyer E.H., Müller-Schüssele S.J., Schwarzländer M. Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics. Plant J. 2020;101(2):420-441. DOI 10.1111/tpj.14534
2. Hemono M., Ubrig É., Azeredo K., Salinas-Giegé T., Drouard L., Du chêne A.-M. Arabidopsis voltage-dependent anion channels (VDACs): overlapping and specific functions in mitochondria. Cells. 2020; 9(4):1023. DOI 10.3390/cells9041023
3. Islas-Osuna M.A., Silva-Moreno B., Caceres-Carrizosa N., GarcíaRob les J.M., Sotelo-Mundo R.R., Yepiz-Plascencia G.M. Editing of the grapevine mitochondrial cytochrome b mRNA and molecular modeling of the protein. Biochimie. 2006;88(5):431-435. DOI 10.1016/j.biochi.2005.10.003
4. Konstantinov Y.M., Dietrich A., Weber-Lotfi F., Ibrahim N., Klimenko E.S., Tarasenko V.I., Bolotova T.A., Koulintchenko M.V. DNA import into mitochondria. Biochemistry (Mosc.). 2016;81(10):1044- 1056. DOI 10.1134/S0006297916100035
5. Koulintchenko M., Konstantinov Y., Dietrich A. Plant mitochondria actively import DNA via the permeability transition pore complex. EMBO J. 2003;22(6):1245-1254. DOI 10.1093/emboj/cdg128
6. Koulintchenko M., Temperley R.J., Mason P.A., Dietrich A., Lightowlers R.N. Natural competence of mammalian mitochondria allows the molecular investigation of mitochondrial gene expression. Hum. Mol. Genet. 2006;15(1):143-154. DOI 10.1093/hmg/ddi435 Larosa V., Remacle C. Transformation of the mitochondrial genome. Int. J. Dev. Biol. 2013;57(6-8):659-665. DOI 10.1387/ijdb.130230cr
7. Lister R., Chew O., Lee M.N., Heazlewood J.L., Clifton R., Parker K.L., Millar A.H., Whelan J. A transcriptomic and proteomic characterization of the Arabidopsis mitochondrial protein import apparatus and its response to mitochondrial dysfunction. Plant Physiol. 2004;134(2):777-789. DOI 10.1104/pp.103.033910
8. Martin W.F., Garg S., Zimorski V. Endosymbiotic theories for eukaryote origin. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015;370(1678): 20140330. DOI 10.1098/rstb.2014.0330
9. Morley S.A., Nielsen B.L. Plant mitochondrial DNA. Front. Biosci. 2017;22(6):1023-1032. DOI 10.2741/4531
10. Murcha M.W., Lister R., Ho A.Y., Whelan J. Identification, expression, and import of components 17 and 23 of the inner mitochondrial membrane translocase from Arabidopsis. Plant Physiol. 2003; 131(4):1737-1747. DOI 10.1104/pp.102.016808
11. Murcha M.W., Elhafez D., Millar A.H., Whelan J. The C-terminal region of TIM17 links the outer and inner mitochondrial membranes in Arabidopsis and is essential for protein import. J. Biol. Chem. 2005;280(16):16476-16483. DOI 10.1074/jbc.M413299200
12. Murcha M.W., Elhafez D., Lister R., Tonti-Filippini J., Baumgartner M., Philippar K., Carrie C., Mokranjac D., Soll J., Whelan J. Characterization of the preprotein and amino acid transporter gene family in Arabidopsis. Plant Physiol. 2007;143(1):199-212. DOI 10.1104/pp.106.090688
13. Murcha M.W., Wang Y., Narsai R., Whelan J. The plant mitochondrial protein import apparatus: the differences make it interesting. Biochim. Biophys. Acta. 2014;1840(4):1233-1245. DOI 10.1016/j.bbagen.2013.09.026
14. Ryan K.R., Leung R.S., Jensen R.E. Characterization of the mitochondrial inner membrane translocase complex: the Tim23p hydrophobic domain interacts with Tim17p but not with other Tim23p molecules. Mol. Cell. Biol. 1998;18(1):178-187. DOI 10.1128/MCB.18.1.178
15. Salinas T., El Farouk-Ameqrane S., Ubrig E., Sauter C., Duchene A.M., Marechal-Drouard L. Molecular basis for the differential interaction of plant mitochondrial VDAC proteins with tRNAs. Nucleic Acids Res. 2014;42(15):9937-9948. DOI 10.1093/nar/gku728
16. Salinas-Giegé T., Giegé R., Giegé P. tRNA biology in mitochondria. Int. J. Mol. Sci. 2015;16(3):4518-4559. DOI 10.3390/ijms16034518
17. Sweetlove L.J., Taylor N.L., Leaver C.J. Isolation of intact, functional mitochondria from the model plant Arabidopsis thaliana. In: Leister D., Herrmann J.M. (Eds.). Mitochondria. Methods in Molecular Biology™. Vol. 372. Humana Press, 2007;125-136. DOI 10.1007/978-1-59745-365-3_9
18. Tarasenko T.A., Tarasenko V.I., Koulintchenko M.V., Klimenko E.S., Konstantinov Y.M. DNA import into plant mitochondria: complex approach for in organello and in vivo studies. Biochemistry (Mosc.). 2019;84(7):817-828. DOI 10.1134/S0006297919070113
19. Tarasenko T.A., Klimenko E.S., Tarasenko V.I., Koulintchenko M.V., Dietrich A., Weber-Lotfi F., Konstantinov Y.M. Plant mitochondria import DNA via alternative membrane complexes involving various VDAC isoforms. Mitochondrion. 2021;60:43-58. DOI 10.1016/j.mito.2021.07.006
20. Tateda C., Watanabe K., Kusano T., Takahashi Y. Molecular and genetic characterization of the gene family encoding the voltage-dependent anion channel in Arabidopsis. J. Exp. Bot. 2011;62(14):4773-4785. DOI 10.1093/jxb/err113
21. Truscott K.N., Kovermann P., Geissler A., Merlin A., Meijer M., Driessen A.J., Rassow J., Pfanner N., Wagner R. A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nat. Struct. Biol. 2001;8(12):1074-1082. DOI 10.1038/nsb726
22. Verechshagina N.A., Konstantinov Y.M., Kamenski P.A., Mazunin I.O. Import of proteins and nucleic acids into mitochondria. Biochemistry (Mosc.). 2018;83(6):643-661. DOI 10.1134/S0006297918060032
23. Wang Y., Carrie C., Giraud E., Elhafez D., Narsai R., Duncan O., Whelan J., Murcha M.W. Dual location of the mitochondrial preprotein transporters B14.7 and Tim23-2 in complex I and the TIM17:23 complex in Arabidopsis links mitochondrial activity and biogenesis. Plant Cell. 2012;24(6):2675-2695. DOI 10.1105/tpc.112.098731
24. Wang Y., Law S.R., Ivanova A., van Aken O., Kubiszewski-Jakubiak S., Uggalla V., van der Merwe M., Duncan O., Narsai R., Whelan J., Murcha M.W. The mitochondrial protein import component, TRANSLOCASE OF THE INNER MEMBRANE17-1, plays a role in defining the timing of germination in Arabidopsis. Plant Physiol. 2014;166(3):1420-1435. DOI 10.1104/pp.114.245928
25. Weber-Lotfi F., Ibrahim N., Boesch P., Cosset A., Konstantinov Y., Lightowlers R.N., Dietrich A. Developing a genetic approach to investigate the mechanism of mitochondrial competence for DNA import. Biochim. Biophys. Acta. 2009;1787(5):320-327. DOI 10.1016/j.bbabio.2008.11.001
26. Weber-Lotfi F., Koulintchenko M.V., Ibrahim N., Hammann P., Mileshina D.V., Konstantinov Y.M., Dietrich A. Nucleic acid import into mitochondria: New insights into the translocation pathways. Biochim. Biophys. Acta. 2015;1853(12):3165-3181. DOI 10.1016/j.bbamcr.2015.09.011
27. Wu F.-H., Shen S.-C., Lee L.-Y., Chan M.-T., Lin C.-S. Tape-Arabidopsis sandwich – a simpler Arabidopsis protoplast isolation method. Plant Methods. 2009;5:16. DOI 10.1186/1746-4811-5-16