Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Изучение устойчивости к бурой ржавчине, урожайности и качества зерна у образцов коллекции мягкой пшеницы в экологических условиях Новосибирской области

https://doi.org/10.18699/VJGB-23-114

Аннотация

К основным факторам, влияющим на формирование высокого урожая, относятся связь генотипа сорта с условиями произрастания и фитопатогенная нагрузка, что необходимо учитывать в селекции для поиска доноров устойчивости и высокой выраженности ценных признаков. Изучение устойчивости 49 образцов мягкой пшеницы к поражению бурой ржавчиной проведено в полевых условиях естественного инфекционного фона и в лабораторных условиях к монопустульным изолятам с вирулентностью к генам Lr9 и Lr24. Показано, что сорта, несущие чужеродные гены Lr6Agi2 (Тулайковская 10) и Lr6Agi1 (Воевода), устойчивы к поражению бурой ржавчиной как в полевых условиях, так и при заражении в лаборатории. Сорта KWS Buran, KWS Akvilon, KW 240-3-13 и Этюд, которые формировали урожайность от 417 до 514 г/м2 – на уровне лучшего стандарта Сибирской 17, целесообразно использовать в условиях Западной Сибири в качестве доноров гена устойчивости Lr24. Донором генов устойчивости Lr19 и частично эффективного Lr26 может служить сорт Омская 44, характеризующийся урожайностью 440 г/м2. Сорта Тулеевская и Алтайская 110, в геноме которых содержится ген Lr9, рекомендуется использовать при создании генотипов с пирамидой генов устойчивости. Наиболее высокие показатели содержания белка и клейковины выявлены у образца CS2A/2M, наименьшие – у сортообразцов KWS Buran, Алтайская 110, Волгоуральская и KWS Akvilon. Сравнение коллекции образцов мягкой пшеницы по микро- (Cu, Mn, Zn, Fe) и макроэлементам (Ca, Mg, K) продемонстрировало наиболее высокие показатели у группы, состоящей из образцов CS2A/2M, Тулайковская 10, Pavon и Тулеевская. Наименьшие показатели большинства элементов определены у сортов KWS Buran, Новосибирская 15 и Волгоуральская. Озимые сорта, характеризующиеся устойчивостью к поражению бурой ржавчиной в условиях инфекционного фона, как правило, несут возрастные гены устойчивости (Lr34, Lr12 и Lr13), в том числе в сочетании с ювенильным геном Lr26. У линии с озимым типом развития (KS 93 U 62) выявлен ген Lr41, благодаря чему линия сохраняла устойчивость к поражению клоном патогена бурой ржавчины кLr24, несмотря на наличие в ее генотипе гена Lr24. Сорта Дока и Чешская 17 могут быть донорами генов устойчивости Lr26 + Lr34 и Lr9 + Lr12 + Lr13 + Lr34 и источниками короткостебельности без снижения зимостойкости и урожайности в условиях Западной Сибири.

Об авторах

Л. П. Сочалова
Сибирский научно-исследовательский институт растениеводства и селекции – филиал Федерального исследовательского центра Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

р.п. Краснообск, Новосибирская область



В. А. Апарина
Сибирский научно-исследовательский институт растениеводства и селекции – филиал Федерального исследовательского центра Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

р.п. Краснообск, Новосибирская область



Н. И. Бойко
Сибирский научно-исследовательский институт растениеводства и селекции – филиал Федерального исследовательского центра Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

р.п. Краснообск, Новосибирская область



Е. В. Зуев
Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений им. Н.И. Вавилова (ВИР)
Россия

Санкт-Петербург



Е. В. Морозова
Сибирский научно-исследовательский институт растениеводства и селекции – филиал Федерального исследовательского центра Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

р.п. Краснообск, Новосибирская область



К. К. Мусинов
Сибирский научно-исследовательский институт растениеводства и селекции – филиал Федерального исследовательского центра Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

р.п. Краснообск, Новосибирская область



Н. А. Виниченко
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



И. Н. Леонова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский государственный аграрный университет
Россия

Новосибирск



В. В. Пискарев
Сибирский научно-исследовательский институт растениеводства и селекции – филиал Федерального исследовательского центра Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

р.п. Краснообск, Новосибирская область



Список литературы

1. Aktar-Uz-Zaman M., Tuhina-Khatun М., Hanafi M.M., Sahebi M. Genetic analysis of rust resistance genes in global wheat cultivars: an overview. Biotechnol. Biotechnol. Equip. 2017;31(3):431­445. DOI 10.1080/13102818.2017.1304180

2. Adonina I.G., Bukatich E.Y., Salina E.A., Piskarev V.V., Tyunin V.A., Shreyder E.R. Inheritance of the translocation in chromosome 2D of common wheat from Aegilops speltoides Tausch with leaf rust resistance gene. Russ. J. Genet. 2018;54(8):989­993. DOI 10.1134/S1022795418080021

3. Brevis J.C., Chicaiza O., Khan I.A., Jackson L., Morris C.F., Dubcovsky J. Agronomic and quality evaluation of common wheat nearisogenic lines carrying the leaf rust resistance gene Lr47. Crop Sci. 2008;48(4):1441­1451. DOI 10.2135/cropsci2007.09.0537

4. Chełkowski J., Golka L., Stepień Ł. Application of STS markers for leaf rust resistance genes in near­isogenic lines of spring wheat cv. Thatcher. J. Appl. Genet. 2003;44(3):323­338

5. Davoyan R.O., Bebyakina I.V., Davoyan E.R., Zinchenko A.S., Zubanova Yu.S., Mikov D.S. Introgressive lines of common wheat with the genetic material of Agropyron glaucum. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2015;19(1):83­90. DOI 10.18699/VJ15.010 (in Rus­ sian)

6. Davydova N.V., Kazachenko A.O. Peculiarities of selection of initial material for selection of spring soft wheat in the conditions of the Central Non­Chernozem Region. Vestnik Altayskogo Gosudarstvennogo Agrarnogo Universiteta = Bulletin of Altai State Agrarian University. 2013;103(5):5­9 (in Russian)

7. Friebe B., Jiang J., Raupp W.J., McIntosh R.A., Gill B.S. Characte ri zation of wheat­alien translocations conferring resistance to diseases and pests: current status. Euphytica. 1996;91:59­87. DOI 10.1007/BF00035277

8. Germplasm releases from the wheat genetics resource center. Available: https://www.k­state.edu/wgrc/genetic_resources/germ_plasm_releases_from_the_wgrc.html (Accessed 07.10.2022).

9. Grib S.I. Strategy and priorities of crop breeding in Belarus. Proceedings of the International Conference “Breeding process optimization: factor of the stabilization and increase of plant production in Siberia”. Krasnoyarsk, Kirenskiy Institute of Physics, 2019;23-28 (in Russian)

10. GRIS. Genetic Resources Information System for Wheat and Triticale. Available: http://www.wheatpedigree.net/ (Accessed 07.10.2022).

11. Gryaznov A.A., Pigorev I.Ya. Source material for breeding spring wheat for leaf rust resistance. Vestnik Kurskoy Gosudarstvennoy Sel’skohozyaystvennoy Akademii = Bulletin of the Kursk State Agricultural Academy. 2019;5:45­52 (in Russian)

12. Gultyaeva E.I. Methods for identifying wheat resistance genes to leaf rust using DNA markers and characterizing the effectiveness of Lr­genes. St. Petersburg: VNIIZR Publ., 2012 (in Russian)

13. Gultyaeva E.I. The diversity of Russian soft wheat varieties in genes for brown rust. Proceedings of the International Conference “Current issues in plant immunity against pests”. St. Petersburg: AllRussia Plant Protection Institute, 2016;24 (in Russian)

14. Gultyaeva E.I. The genetic structure of Puccinia triticina populations in Russia and its variability induced by the host plant. Doct. Biol. Sci. Diss. St. Petersburg, 2018 (in Russian)

15. Gultyaeva E.I., Shaydayuk E.L. Identification of leaf rust resistance genes in the new Russian varieties of common wheat. Biotekhnologiya i Selektsiya Rasteniy = Plant Biotechnology and Breeding. 2021;4(2):15­27. DOI 10.30901/2658­6266­2021­2­o2 (in Russian)

16. Gultyaeva E.I., Shaydayuk E.L., Shamanin V.P., Аkhmetova А.К., Tyunin V.A., Shreyder E.R., Kashina I.V., Eroshenko L.A., Sereda G.A., Morgunov A.I. Genetic structure of Russian and Kazakhstani leaf rust causative agent Puccinia triticina Erikss. populations as assessed by virulence profiles and SSR markers. Agric. Biol. 2018;53(1):85­95. DOI 10.15389/agrobiology.2018.1.85eng

17. Gultyaeva E.I., Sibikeev S.N., Druzhin A.E., Shaydayuk E.L. Enlargement of genetic diversity of spring bread wheat resistance to leaf rust (Puccinia triticina Eriks.) in Lower Volga region. Sel’sko khozyaistvennaya Biologia = Agricultural Biology. 2020; 55(1):27­44. DOI 10.15389/agrobiology.2020.1.27rus (in Russian)

18. Imbaby I.A., Mahmoud M.A., Hassan M.E.M., Abd­El­Aziz A.R.M. Identification of leaf rust resistance genes in selected egyptian wheat cultivars by molecular markers hindawi publishing corporation. Sci. World J. 2014;2014:574285. DOI 10.1155/2014/574285

19. Knott D.R. Translocations involving Triticum chromosomes and Agropyron chromosomes carrying leaf rust resistance. Can. J. Genet. Cytol. 1968;10(3):695­696. DOI 10.1139/g68­087

20. Kolmer J.A., Kabdulova M.G., Mustafina M.A., Zhemchuzhina N.S., Dubovoy V. Russian populations of Puccinia triticina in distant regions are not differentiated for virulence and molecular genotype. Plant Pathol. 2015;64(2):328­336. DOI 10.1111/ppa.12248

21. Kon’kova E.A., Lyashcheva S.V., Sergeeva A.I. Screening of the world winter bread wheat collection for leaf­stem disease resistance in the Lower Volga region. Zernovoe Hozyaystvo Rossii = Grain Economy of Russia. 2022;14(2):36­40. DOI 10.31367/2079­8725­2022­80­2­36­40 (in Russian)

22. Koyshybaev M. Reaction of isogenes thathcher wheat lines on the North­Kazakhstan population of Puccinia triticina and resistance of wheat cultivars. Mikologiya i Fitopatologiya = Mycology and Phytopathology. 2019;53(3):162­169. DOI 10.1134/S0026364819030073 (in Russian)

23. Krupin P.Yu., Divashuk M.G., Karlov G.I. Gene resources of perennial wild cereals involved in breeding to improve wheat crop. Sel’skokhozyaistvennaya Biologiya = Agricultural Biology. 2019; 54(3):409­425. DOI 10.15389/agrobiology.2019.3.409rus (in Russian)

24. Kumlay A.M., Baenziger P.S., Gill K.S., Shelton D.R., Graybosch R.A., Lukaszewski A.J., Wesenberg D.M. Understanding the effect of rye chromatin in bread wheat. Crop Sci. 2003;43(5):

25. ­1651. DOI 10.2135/cropsci2003.1643

26. Leonova I.N. Influence of alien genetic material on the manifestation of agronomically important traits of common wheat (T. aestivum L.). Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(3):321­328. DOI 10.18699/VJ18.367 (in Russian)

27. Leonova I.N., Piskarev V.V., Boiko N.I., Stasyuk A.I., Adonina I.G., Salina E.A. Development and study of new spring wheat lines containing aliengenetic material from Th. intermedium and Ae. spel ­ toides. In: Current Challenges in Plant Genetics, Genomics, Bioinformat ics, and Biotechnology. Proceedings of the Fifth International Scient ific Conference PlantGen2019. Novosibirsk: ICG SB RAS, 2019;61-63

28. Mains E.B., Jackson H.S. Physiologic specialization in leaf of wheat Puccinia triticina Erikss. Phytopathology. 1926;1(16):89­120 Mal’chikov P.N., Myasnikova M.G. Relative development of durum wheat productivity traits in the breeding process. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2012;16(4/2):987­997 (in Russian)

29. Marais G.F. The modification of a common wheat-Thinopyrum distichum translocated chromosome with a locus homeoallelic to Lr19. Theor. Appl. Genet. 1992;85(1):73-78. DOI 10.1007/BF00223847

30. Marchenko D.M., Ivanisov M.M., Rybas’ I.A., Nekrasov E.I., Romanyukina I.V., Chuhnenko Yu.Yu. The results of breeding work with the winter bread wheat for non­fallow forecrops in the Agricultural Research Center “Donskoy”. Zernovoe Khozyays tvo Rossii = Grain Economy of Russia. 2020;72(6):3­9. DOI 10.31367/2079­8725­2020­72­6­3­9 (in Russian)

31. Markelova T.S. Use of wild wheat species and relatives for introgression of disease resistance genes. AGRO XXI. 2007;4­6:16­18 (in Russian)

32. Mebrate S.A., Oerke E.C., Dehne H.W., Pillen K. Mapping of the leaf rust resistance gene Lr38 on wheat chromosome arm 6DL using SSR markers. Euphytica. 2008;162:457­466. DOI 10.1007/s10681­007­9615­z

33. Merezhko A.F., Udachin R.A., Zuev V.E., Filatenko A.A., Ser bin A.A., Lyapunova O.A., Kosov V.Yu., Kurkiev U.K., Okhotnikova T.V., Navruzbekov N.A., Boguslavskiy R.L., Abdulaeva A.K., Chikida N.N., Mitrofanova O.P., Potokina S.A. Replenishment, preservation in live form and study the world collection of wheat, triticale and Aegilops. St.Peterburg: VIR Publ., 1999 (in Russian)

34. Meshkova L.V., Rosseeva L.P., Sidorov A.V., Sabaeva O.B., Zverov skaya T.S., Belan I.A. Physiological specialization of brown rust pathogen on the wheat in Krasnoyarsk region. Vestnik KrasGAU = Bulletin of the Krasnoyarsk State Agrarian University. 2019;142(1):29­36 (in Russian)

35. Meshkova L.V., Rosseeva L.P., Shmakova O.A., Belan I.A. Influence of varieties of soft spring wheat with gene Lr26 on the virulence of the agent of brown rust in the Omsk region. Uspekhi Sovremennogo Estestvoznaniya = Successes of Modern Natural Science. 2021;10:20­25. DOI 10.17513/use.37693 (in Russian)

36. Mihaylova L.A., Kvitko K.V. Laboratory methods for cultivation of the leaf rust pathogen Puccinia recondita Rob. ex. Desm. f. trit ici. Mikologiya i Fitopatologiya = Mycology and Phytopathology. 1979;4(3):269­273 (in Russian)

37. Peterson R.F., Cambell A.B., Hannah A.E. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can. J. Res. 1948;26(5):496­500. DOI 10.1139/cjr48c­033

38. Piskarev V.V., Aparina V.A., Boyko N.I., Morozova E.V., Timofeev A.A. Influence translocation from Secale cereale and Aegilops speltoides to agronomic traits of spring wheat breeding lines. In: AGRO BIOTECHNOLOGY-2021. Collection of articles of the international scientific conference. Moscow: Russian State Agrarian University Publ., 2021;778­782 (in Russian)

39. Plaschke J., Ganal M.W., Röder M.S. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 1995;91(6-7):1001-1007. DOI 10.1007/BF00223 912

40. Pozherukova V.E., Shamanin V.P., Gladkih M.S., Chursin A.S., Gul’tyaeva E.I. Evaluation of the collection of varieties of the KASIB network in the conditions of the southern forest-steppe of Western Siberia. Vestnik Omskogo GAU = Bulletin of the Omsk State Agrarian University. 2019;33(1):30­37 (in Russian)

41. Pryanishnikov A.I. Scientific foundations of adaptive breeding in the Volga region. Moscow: RAS Publ., 2018 (in Russian)

42. Qiu J.W., Schürch A.C., Yahiaoui N., Dong L.L., Fan H.J., Zhang Z.J., Keller B., Ling H.Q. Physical mapping and identification of a candidate for the leaf rust resistance gene Lr1 of wheat. Theor. Appl. Genet. 2007;115(2):159­168. DOI 10.1007/s00122­007­0551­z

43. Roshan K., Rathore K.S., Bharkatiya M., Goel P.K., Naruka P.S., Saurabh S.S. Therapeutic potential of Triticumaestivum Linn. (Wheat Grass or Green Blood Therapy) in the treatment and prevention of Chronic and Acute Diseases: an overview. Pharma­ Tutor. 2016;4(2):19­27

44. Schachermayr G., Siedler H., Gale M.D., Winzeler H., Winzeler M., Keller B. Identification and localization of molecular markers linked to the Lr9 leaf rust resistance gene of wheat. Theor. Appl. Genet. 1994;88(1):110-115. DOI 10.1007/BF00222402

45. Shishkin N.V., Derova T.G., Gultyaeva E.I., Shaydayuk E.L. Determination of leaf rust resistance genes in winter soft wheat varieties using traditional and modern research methods. Zernovoe Khozyaystvo Rossii = Grain Economy of Russia. 2018;59(5):63­67 (in Russian)

46. Sibikeev S.N., Druzhin A.E., Badaeva E.D., Shishkina A.A., Dragovich A.Y., Gultyaeva E.I., Kroupin P.Y., Karlov G.I., Khuat T.M., Divashuk M.G. Comparative analysis of Agropyron intermedium (host) beauv 6Agi and 6Agi2 chromosomes in bread wheat cultivars and lines with wheat–wheatgrass substitutions. Russ. J. Genet. 2017; 53(3):314­324. DOI 10.1134/S1022795417030115

47. Singh R.P., Huerta­Espino J., Rajaram S., Crossa J. Agronomic effects from chromosome translocations 7DL.7Ag and 1BL.1RS in spring wheat. Crop Sci. 1998;38(1):27­33. DOI 10.2135/cropsci1998.0011183X003800010005x

48. Singh S., Bowden R.L. Molecular mapping of adult-plant race-specific leaf rust resistance gene Lr12 in bread wheat. Mol. Breed. 2011;28:137­142. DOI 10.1007/s11032­010­9467­4

49. Skolotneva E.S., Leonova I.N., Bukatich E.Yu., Salina E.A. Methodical approaches to identification of effective wheat genes providing broad­spectrum resistance against fungal diseases. Vavi lov skii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(7):862­869. DOI 10.18699/VJ17.307 (in Russian)

50. Sochalova L.P., Musinov K.K., Piskarev V.V. Gene pool of spring and winter soft wheat resistance sources to fungal phytopathogens. In: Gene pool and plant breeding. Materials of the 6th International Conference. Novosibirsk, 2022;187­191 (in Russian)

51. Souza E., Sorrells M.E. Prediction of progeny variation in oat from parental genetic relationships. Theor. Appl. Genet. 1991;82(2): 233-241. DOI 10.1007/BF00226219

52. Stasyuk A.I., Leonova I.N., Salina E.A. Variability of agronomically important traits in spring wheat hybrids obtained by marker­assisted selection from crosses of winter wheat with spring wheat donors of resistance genes. Sel’skokhozyaistvennaya Biologiya = Agri cul tural Biology. 2017;52(3):526­534. DOI 10.15389/agro biology.2017.3.526rus (in Russian)

53. Timonova E.M., Leonova I.N., Belan I.A., Rosseeva L.P., Salina E.A. Influence of individual regions of Triticum timopheevii chromosomes on the formation of resistance to diseases and quantitative traits of common wheat. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2012;16(1):142­159 (in Russian)

54. Tomkowiak A., Skowrońska R., Buda A., Kurasiak-Popowska D., Nawracała J., Kowalczewski P.Ł., Pluta M., Radzikowska D.

55. Identification of leaf rust resistance genes in selected wheat cultivars and development of multiplex PCR. Open Life Sci. 2019;14: 327­334. DOI 10.1515/biol­2019­0036

56. Volkova G.V., Kremneva O.Yu., Shumilov Yu.V., Gladkova E.V., Vaganova O.F., Mitrofanova O.P., Lysenko N.S., Chikida N.N., Hakimova A.G., Zuev E.V. Immunological assessment of wheat samples, its rare species, Aegilops from the collection Federal research center “Vavilov All-Russian Institute Of Genetic Resources” and selection of sources with group resistance. Vestnik Za shchity Rasteniy = Plant Protection News. 2016;89(3):38­39 (in Russian)

57. Vyushkov A.A. Breeding of spring wheat in the Middle Volga region. Samara, 2004 (in Russian) Zhang W., Lukaszewski A.J., Kolmer J., Soria M.A., Goyal S., Dubcovsky J. Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y ) genes from Lophopyrum ponticum. Theor. Appl. Genet. 2005;111(3):573­582. DOI 10.1007/s00122­005­2048­y


Рецензия

Просмотров: 694


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)