Preview

Vavilov Journal of Genetics and Breeding

Advanced search

InterTransViewer: a comparative description of differential gene expression profiles from different experiments

https://doi.org/10.18699/VJGB-23-119

Abstract

Meta-analysis of transcriptomic data from different experiments has become increasingly prevalent due to a significantly increasing number of genome-wide experiments investigating gene expression changes under various conditions. Such data integration provides greater accuracy in identifying candidate genes and allows testing new hypotheses, which could not be validated in individual studies. To increase the relevance of experiment integration, it is necessary to optimize the selection of experiments. In this paper, we propose a set of quantitative indicators for a comprehensive comparative description of transcriptomic data. These indicators can be easily visualized and interpreted. They include the number of differentially expressed genes (DEGs), the proportion of experiment-specific (unique) DEGs in each data set, the pairwise similarity of experiments in DEG composition and the homogeneity of DEG profiles. For automatic calculation and visualization of these indicators, we have developed the program InterTransViewer. We have used InterTransViewer to comparatively describe 23 auxin- and 16 ethylene- or 1-aminocyclopropane-1-carboxylic acid (ACC)-induced transcriptomes in Arabidopsis thaliana L. We have demonstrated that analysis of the characteristics of individual DEG profiles and their pairwise comparisons based on DEG composition allow the user to rank experiments in the context of each other, assess the tendency towards their integration or segregation, and generate hypotheses about the influence of non-target factors on the transcriptional response. As a result, InterTransViewer identifies potentially homogeneous groups of experiments. Subsequent estimation of the profile homogeneity within these groups using resampling and setting a significance threshold helps to decide whether these data are appropriate for meta-analysis. Overall, InterTransViewer makes it possible to efficiently select experiments for meta-analysis depending on its task and methods.

About the Authors

А. V. Tyapkin
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



V. V. Lavrekha
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



E. V. Ubogoeva
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



D. Yu. Oshchepkov
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



N. A. Omelyanchuk
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



E. V. Zemlyanskaya
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет
Russian Federation

Novosibirsk



References

1. Bairakdar M.D., Tewari A., Truttmann M.C. A meta-analysis of RNASeq studies to identify novel genes that regulate aging. Exp. Gerontol. 2023;173:112107. DOI 10.1016/j.exger.2023.112107

2. Bargmann B.O., Vanneste S., Krouk G., Nawy T., Efroni I., Shani E., Choe G., Friml J., Bergmann D.C., Estelle M., Birnbaum K.D. A map of cell type-specific auxin responses. Mol. Syst. Biol. 2013; 9:688. DOI 10.1038/msb.2013.40

3. Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B. Methodol. 1995;57(1):289-300. DOI 10.1111/j.2517-6161.1995.tb02031.x

4. Brazma A. Minimum information about a microarray experiment ( MIAME) – successes, failures, challenges. Sci. World J. 2009; 29(9):420-423. DOI 10.1100/tsw.2009.57

5. Brazma A., Hingamp P., Quackenbush J., Sherlock G., Spellman P., Stoeckert C., Aach J., Ansorge W., Ball C.A., Causton H.C., Gaasterland T., Glenisson P., Holstege F.C., Kim I.F., Markowitz V., Matese J.C., Parkinson H., Robinson A., Sarkans U., Schulze-Kremer S., Stewart J., Taylor R., Vilo J., Vingron M. Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nat. Genet. 2001;29(4):365-371. DOI 10.1038/ng1201-365

6. Cahan P., Rovegno F., Mooney D., Newman J.C., St. Laurent G. 3rd, McCaffrey T.A. Meta-analysis of microarray results: challenges, opportunities, and recommendations for standardization. Gene. 2007; 401(1-2):12-18. DOI 10.1016/j.gene.2007.06.016

7. Chaiwanon J., Wang Z.Y. Spatiotemporal brassinosteroid signaling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots. Curr. Biol. 2015;25(8):1031-1042. DOI 10.1016/j.cub.2015.02.046

8. Chang K.N., Zhong S., Weirauch M.T., Hon G., Pelizzola M., Li H., Huang S.S., Schmitz R.J., Urich M.A., Kuo D., Nery J.R., Qiao H., Yang A., Jamali A., Chen H., Ideker T., Ren B., Bar-Joseph Z., Hughes T.R., Ecker J.R. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. eLife. 2013;2:e00675. DOI 10.7554/eLife.00675

9. Chen S., Zhou Y., Chen Y., Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884-i890. DOI 10.1093/bioinformatics/bty560

10. Clough E., Barrett T. The gene expression omnibus database. Me thods Mol. Biol. 2016;1418:93-110. DOI 10.1007/978-1-4939-3578-9_5

11. De Rybel B., Audenaert D., Xuan W., Overvoorde P., Strader L.C., Kepinski S., Hoye R., Brisbois R., Parizot B., Vanneste S., Liu X., Gilday A., Graham I.A., Nguyen L., Jansen L., Njo M.F., Inzé D., Bartel B., Beeckman T. A role for the root cap in root branching revealed by the non-auxin probe naxillin. Nat. Chem. Biol. 2012;8(9): 798-805. DOI 10.1038/nchembio.1044

12. Delker C., Pöschl Y., Raschke A., Ullrich K., Ettingshausen S., Hauptmann V., Grosse I., Quint M. Natural variation of transcriptional auxin response networks in Arabidopsis thaliana. Plant Cell. 2010; 22(7):2184-2200. DOI 10.1105/tpc.110.073957

13. Feng Y., Xu P., Li B., Li P., Wen X., An F., Gong Y., Xin Y., Zhu Z., Wang Y., Guo H. Ethylene promotes root hair growth through coordinated EIN3/EIL1 and RHD6/RSL1 activity in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2017;114:13834-13839. DOI 10.1073/pnas.1711723115

14. Freire-Rios A., Tanaka K., Crespo I., van der Wijk E., Sizentsova Ya., Levitsky V., Lindhoud S., Fontana M., Hohlbein J., Boer R., Mironova V., Weijers D. Architecture of DNA elements mediating ARF transcription factor binding and auxin-responsive gene expression in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2020;117(39):24557-24566. DOI 10.1073/pnas.2009554117

15. Fu L., Liu Y., Qin G., Wu P., Zi H., Xu Z., Zhao X., Wang Y., Li Y., Yang S., Peng C., Wong C.C.L., Yoo S.D., Zuo Z., Liu R., Cho Y.H., Xiong Y. The TOR–EIN2 axis mediates nuclear signalling to modulate plant growth. Nature. 2021;591(7849):288-292. DOI 10.1038/s41586-021-03310-y

16. Harkey A.F., Watkins J.M., Olex A.L., DiNapoli K.T., Lewis D.R., Fetrow J.S., Binder B.M., Muday G.K. Identification of transcriptional and receptor networks that control root responses to ethylene. Plant Physiol. 2018;176(3):2095-2118. DOI 10.1104/pp.17.00907

17. Kang D.D., Sibille E., Kaminski N., Tseng G.C. MetaQC: objective quality control and inclusion/exclusion criteria for genomic metaanalysis. Nucleic Acids Res. 2012;40(2):e15. DOI 10.1093/nar/gkr1071

18. Keel B.N., Lindholm-Perry A.K. Recent developments and future directions in meta-analysis of differential gene expression in livestock RNA-Seq. Front. Genet. 2022;19(13):983043. DOI 10.3389/fgene.2022.983043

19. Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R., Salzberg S.L. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. DOI 10.1186/gb-2013-14-4-r36

20. Kim D., Paggi J.M., Park C., Bennett C., Salzberg S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019;37:907-915. DOI 10.1038/s41587-019-0201-4

21. Lawrence M., Huber W., Pagès H., Aboyoun P., Carlson M., Gentleman R., Morgan M.T., Carey V.J. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 2013;9:e1003118. DOI 10.1371/journal.pcbi.1003118

22. Lewis D.R., Olex A.L., Lundy S.R., Turkett W.H., Fetrow J.S., Muday G.K. A kinetic analysis of the auxin transcriptome reveals cell wall remodeling proteins that modulate lateral root development in Arabidopsis. Plant Cell. 2013;25:3329-3346. DOI 10.1105/tpc.113.114868

23. Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550. DOI 10.1186/s13059-014-0550-8

24. Luo Y., Shi H. Direct regulation of phytohormone actions by photoreceptors. Trends Plant Sci. 2019;24:105-108. DOI 10.1016/j.tplants.2018.11.002

25. McDermaid A., Monier B., Zhao J., Liu B., Ma Q. Interpretation of differential gene expression results of RNA-seq data: review and integration. Brief. Bioinform. 2019;20(6):2044-2054. DOI 10.1093/bib/bby067

26. Mozgová I., Muñoz-Viana R., Hennig L. PRC2 represses hormoneinduced somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. PLoS Genet. 2017;13(1):e1006562. DOI 10.1371/journalpgen.1006562

27. Müller D., Waldie T., Miyawaki K., To J.P., Melnyk C.W., Kieber J.J., Kakimoto T., Leyser O. Cytokinin is required for escape but not release from auxin mediated apical dominance. Plant J. 2015;82(5): 874-886. DOI 10.1111/tpj.12862

28. Okushima Y., Overvoorde P.J., Arima K., Alonso J.M., Chan A., Chang C., Ecker J.R., Hughes B., Lui A., Nguyen D., Onodera C., Quach H., Smith A., Yu G., Theologis A. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell. 2005;17(2):444-463. DOI 10.1105/tpc.104.028316

29. Omelyanchuk N.A., Wiebe D.S., Novikova D.D., Levitsky V.G., Klimova N., Gorelova V., Weinholdt C., Vasiliev G.V., Zemlyanskaya E.V., Kolchanov N.A., Kochetov A.V. Auxin regulates functional gene groups in a fold-change-specific manner in Arabidopsis thaliana roots. Sci. Rep. 2017;7(1):2489. DOI 10.1038/s41598-017-02476-8

30. Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. DOI 10.1093/nar/gkv007

31. Romero-Puertas M.C., Peláez-Vico M.Á., Pazmiño D.M., Rodríguez-Serrano M., Terrón-Camero L., Bautista R., Gómez-Cadenas A., Claros M.G., León J., Sandalio L.M. Insights into ROS-dependent signalling underlying transcriptomic plant responses to the herbicide 2,4-D. Plant Cell Environ. 2022;45(2):572-590. DOI 10.1111/pce.14229

32. Rousselet G.A., Pernet C.R., Wilcox R.R. The percentile bootstrap: a primer with step-by-step instructions in R. Adv. Meth. Pract. Psychol. Sci. 2021;4(1). DOI 10.1177/2515245920911881

33. Rung J., Brazma A. Reuse of public genome-wide gene expression data. Nat. Rev. Genet. 2013;14(2):89-99. DOI 10.1038/nrg3394

34. Sarkans U., Füllgrabe A., Ali A., Athar A., Behrangi E., Diaz N., Fexova S., George N., Iqbal H., Kurri S., Munoz J., Rada J., Papatheodorou I., Brazma A. From arrayexpress to biostudies. Nucleic Acids Res. 2021;49(D1):D1502-D1506. DOI 10.1093/nar/gkaa1062

35. Shi H., Liu R., Xue C., Shen X., Wei N., Deng X.W., Zhong S. Seedlings transduce the depth and mechanical pressure of covering soil using COP1 and ethylene to regulate EBF1/EBF2 for soil emergence. Curr. Biol. 2016a;26(2):139-149. DOI 10.1016/j.cub.2015.11.053

36. Shi H., Shen X., Liu R., Xue C., Wei N., Deng X.W., Zhong S. The red light receptor phytochrome B directly enhances substrate-E3 ligase interactions to attenuate ethylene responses. Dev. Cell. 2016b;39(5): 597-610. DOI 10.1016/j.devcel.2016.10.020

37. Simonini S., Bencivenga S., Trick M., Østergaard L. Auxin-induced modulation of ETTIN activity orchestrates gene expression in Arabidopsis. Plant Cell. 2017;29(8):1864-1882. DOI 10.1105/tpc.17.00389

38. Stelpflug S.C., Sekhon R.S., Vaillancourt B., Hirsch C.N., Buell C.R., de Leon N., Kaeppler S.M. An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development. Plant Genome. 2016;9(1):1-16. DOI 10.3835/plantgenome2015.04.0025

39. Stepanova A.N., Yun J., Likhacheva A.V., Alonso J.M. Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell. 2007;19(7):2169-2185. DOI 10.1105/tpc.107.052068

40. Sudmant P.H., Alexis M.S., Burge C.B. Meta-analysis of RNA-seq expression data across species, tissues and studies. Genome Biol. 2015; 16:287. DOI 10.1186/s13059-015-0853-4

41. Tello-Ruiz M.K., Stein J., Wei S., Preecem J., Olson A., Naithani S., Amarasinghe V., Dharmawardhana P., Jiao Y., Mulvaney J., Kumari S., Chougule K., Elser J., Wang B., Thomason J., Bolser D.M., Kerhornou A., Walts B., Fonseca N.A., Huerta L., Keays M., Tang Y.A., Parkinson H., Fabregat A., McKay S., Weiser J., D’Eustachio P., Stein L., Petryszak R., Kersey P.J., Jaiswal P., Ware D. Gramene 2016: comparative plant genomics and pathway resources. Nucleic Acids Res. 2016;44(D1):D1133-D1140. DOI 10.1093/nar/gkv1179

42. Vanderstraeten L., Depaepe T., Bertrand S., Van Der Straeten D. The ethylene precursor ACC affects early vegetative development independently of ethylene signaling. Front. Plant Sci. 2019;10:1591. DOI 10.3389/fpls.2019.01591

43. Vanneste S., De Rybel B., Beemster G.T., Ljung K., De Smet I., Van Isterdael G., Naudts M., Iida R., Gruissem W., Tasaka M., Inzé D., Fukaki H., Beeckman T. Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana. Plant Cell. 2005;17(11):30353050. DOI 10.1105/tpc.105.035493

44. Winter C., Kosch R., Ludlow M., Osterhaus A.D.M.E., Jung K. Network meta-analysis correlates with analysis of merged independent transcriptome expression data. BMC Bioinformatics. 2019;20(1): 144. DOI 10.1186/s12859-019-2705-9

45. Xu K., Liu J., Fan M., Xin W., Hu Y., Xu C. A genome-wide transcriptome profiling reveals the early molecular events during callus initiation in Arabidopsis multiple organs. Genomics. 2012;100(2):116124. DOI 10.1016/j.ygeno.2012.05.013

46. Xuan W., Audenaert D., Parizot B., Möller B.K., Njo M.F., De Rybel B., De Rop G., Van Isterdael G., Mähönen A.P., Vanneste S., Beeckman T. Root cap-derived auxin pre-patterns the longitudinal axis of the Arabidopsis root. Curr. Biol. 2015;25(10):1381-1388. DOI 10.1016/j.cub.2015.03.046

47. Yu X.T., Zeng T. Integrative analysis of omics big data. Methods Mol. Biol. 2018;1754:109-135. DOI 10.1007/978-1-4939-7717-8_7

48. Zander M., Willige B.C., He Y., Nguyen T.A., Langford A.E., Nehring R., Howell E., McGrath R., Bartlett A., Castanon R., Nery J.R., Chen H., Zhang Z., Jupe F., Stepanova A., Schmitz R.J., Lewsey M.G., Chory J., Ecker J.R. Epigenetic silencing of a multifunctional plant stress regulator. eLife. 2019;8:e47835. DOI 10.7554/eLife.47835

49. Zhang F., Qi B., Wang L., Zhao B., Rode S., Riggan N.D., Ecker J.R., Qiao H. EIN2-dependent regulation of acetylation of histone H3K14 and non-canonical histone H3K23 in ethylene signalling. Nat. Commun. 2016a;7(1):13018. DOI 10.1038/ncomms13018

50. Zhang F., Wang L., Lim J.Y., Kim T., Pyo Y., Sung S., Shin C., Qiao H. Phosphorylation of CBP20 links microRNA to root growth in the ethylene response. PLoS Genet. 2016b;12(11):e1006437. DOI

51. 1371/journal.pgen.1006437

52. Zhou G., Soufan O., Ewald J., Hancock R.E.W., Basu N., Xia J. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019;47(W1):W234-W241. DOI 10.1093/nar/gkz240


Review

Views: 582


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)