1. Balaban N.Q., Helaine S., Lewis K., Ackermann M., Aldridge B., Andersson D.I., Brynildsen M.P., Bumann D., Camilli A., Collins J.J., Dehio C., Fortune S., Ghigo J.-M., Hardt W.-D., Harms A., Heinemann M., Hung D.T., Jenal U., Levin B.R., Michiels J., Storz G., Tan M.-W., Tenson T., Melderen L.V., Zinkernagel A. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 2019;17(7):441-448. https://doi.org/10.1038/s41579-019-0196-3
2. Datsenko K.A., Wanner B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA. 2000;97(12):6640-6645. https://doi.org/10.1073/pnas.120163297
3. Gaimster H., Cama J., Hernández-Ainsa S., Keyser U.F., Summers D.K. The indole pulse: a new perspective on indole signalling in Escherichia coli. PLoS One. 2014;9(4):e93168. https://doi.org/10.1371/journal.pone.0093168
4. Igarashi K., Kashiwagi K. Polyamine modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines. J. Biochem. 2006;139(1):11-16. https://doi.org/10.1093/jb/mvj020
5. Igarashi K., Kashiwagi K. Effects of polyamines on protein synthesis and growth of Escherichia coli. J. Biol. Chem. 2018;293(48): 18702-18709. https://doi.org/10.1074/jbc.TM118.003465
6. Keseler I.M., Gama-Castro S., Mackie A., Billington R., Bonavides-Martinez C., Caspi R., Kothari A., Krummenacker M., Midford P.E., Muñiz-Rascado L., Ong W.K., Paley S., Santos-Zavaleta A., Subhraveti P., Tierrafría V.H., Wolfe A.J., Collado-Vides J., Paulsen I.T., Karp P.D. The EcoCyc database in 2021. Front. Microbiol. 2021;12: 711077. https://doi.org/10.3389/fmicb.2021.711077
7. Khaova E.A., Kashevarova N.M., Tkachenko A.G. Regulatory effect of polyamines and indole on expression of stress adaptation genes in Escherichia coli. Acta Biomedica Scientifica. 2022;7(3):150-161. https://doi.org/10.29413/ABS.2022-7.3.16 (in Russian)
8. Kim C.S., Li J.H., Barco B., Park H.B., Gatsios A., Damania A., Wang R., Wyche T.P., Piizzi G., Clay N.K., Crawford J.M. Cellular stress upregulates indole signaling metabolites in Escherichia coli. Cell Chem. Biol. 2020;27(6):698-707.e7. https://doi.org/10.1016/j.chembiol.2020.03.003
9. Kusano T., Berberich T., Tateda C., Takahashi Y. Polyamines: essential factors for growth and survival. Planta. 2008;228(3):367-381. https://doi.org/10.1007/s00425-008-0772-7
10. Lang M., Krin E., Korlowski C., Sismeiro O., Varet H., Coppée J.Y., Mazel D., Baharoglu Z. Sleeping ribosomes: bacterial signaling triggers RaiA mediated persistence to aminoglycosides. iScience. 2021; 24(10):103128. https://doi.org/10.1016/j.isci.2021.103128
11. Lee J.H., Wood T.K., Lee J. Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol. 2015;23(11):707-718. https://doi.org/10.1016/j.tim.2015.08.001
12. Lewis K. Persister cells. Annu. Rev. Microbiol. 2010;64:357-372. https://doi.org/10.1146/annurev.micro.112408.134306
13. Li G., Young K.D. Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiology (Reading). 2013;159(2):402-410. https://doi.org/10.1099/mic.0.064139-0
14. Lightfoot H.L., Hall J. Endogenous polyamine function - the RNA perspective. Nucleic Acids Res. 2014;42(18):11275-11290. https://doi.org/10.1093/nar/gku837
15. Lorenz R., Bernhart S.H., Siederdissen C., Tafer H., Flamm C., Stadler P.F., Hofacker I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011;6:26. https://doi.org/10.1186/1748-7188-6-2
16. Michael A.J. Polyamines in eukaryotes, bacteria, and archaea. J. Biol. Chem. 2016;291(29):14896-14903. https://doi.org/10.1074/jbc.R116.734780
17. Michael A.J. Polyamine function in archaea and bacteria. J. Biol. Chem. 2018;293(48):18693-18701. https://doi.org/10.1074/jbc.TM118.005670
18. Miller J.H. Experiments in Molecular Genetics. New York, 1972 Miller-Fleming L., Olin-Sandoval V., Campbell K., Ralser M. Remaining mysteries of molecular biology: the role of polyamines in the cell. J. Mol. Biol. 2015;427(21):3389-3406. https://doi.org/10.1016/j.jmb.2015.06.020
19. Nesterova L.Y., Akhova A.V., Tkachenko A.G. Influence of indole on intracellular polyamines and antibiotic susceptibility of Escherichia coli. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya = Herald of Moscow University. Series 16. Biology. 2021;76(4):219-224 (in Russian)
20. Prossliner T., Skovbo Winther K., Sørensen M.A., Gerdes K. Ribosome hibernation. Annu. Rev. Genet. 2018;52:321-348. https://doi.org/10.1146/annurev-genet-120215-035130
21. Rhee H.J., Kim E.J., Lee J.K. Physiological polyamines: simple primordial stress molecules. J. Cell. Mol. Med. 2007;11(4):685-703. https://doi.org/10.1111/j.1582-4934.2007.00077.x
22. Sakamoto A., Sahara J., Kawai G., Yamamoto K., Ishihama A., Uemura T., Igarashi K., Kashiwagi K., Terui Y. Cytotoxic mechanism of excess polyamines functions through translational repression of specific proteins encoded by polyamine modulon. Int. J. Mol. Sci. 2020; 21(7):2406. https://doi.org/10.3390/ijms21072406
23. Shah P., Swiatlo E. A multifaceted role for polyamines in bacterial pathogens. Mol. Microbiol. 2008;68(1):4-16. https://doi.org/10.1111/j.1365-2958.2008.06126.x
24. Simons R.W., Houman F., Kleckner N. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene. 1987;53(1):85-96. https://doi.org/10.1016/0378-1119(87)90095-3
25. Song S., Wood T.K. ppGpp ribosome dimerization model for bacterial persister formation and resuscitation. Biochem. Biophys. Res. Commun. 2020;523(2):281-286. https://doi.org/10.1016/j.bbrc.2020.01.102
26. Tabor C.W., Tabor H. Polyamines in microorganisms. Microbiol. Rev. 1985;49(1):81-99. https://doi.org/10.1128/mr.49.1.81-99.1985
27. Tkachenko A.G. Molecular Mechanisms of Stress Responses in Microorganisms. Yekaterinburg, 2012 (in Russian)
28. Tkachenko A.G. Stress responses of bacterial cells as mechanisms of development of antibiotic tolerance (review). Applied Biochemistry and Microbiology. 2018;54(2):108-127. https://doi.org/10.1134/S0003683818020114
29. Tkachenko A.G., Akhova A.V., Shumkov M.S., Nesterova L.Yu. Polyamines reduce oxidative stress in Escherichia coli cells exposed to bactericidal antibiotics. Res. Microbiol. 2012;163(2):83-91. https://doi.org/10.1016/j.resmic.2011.10.009
30. Tkachenko A.G., Kashevarova N.M., Karavaeva E.A., Shumkov M.S. Putrescine controls the formation of Escherichia coli persister cells tolerant to aminoglycoside netilmicin. FEMS Microbiol. Lett. 2014;361(1):25-33. https://doi.org/10.1111/1574-6968.12613
31. Tkachenko A.G., Kashevarova N.M., Tyuleneva E.A., Shumkov M.S. Stationary-phase genes upregulated by polyamines are responsible for the formation of Escherichia coli persister cells tolerant to netilmicin. FEMS Microbiol. Lett. 2017;364(9):fnx084. https://doi.org/10.1093/femsle/fnx084
32. Trösch R., Willmund F. The conserved theme of ribosome hibernation: from bacteria to chloroplasts of plants. Biol. Chem. 2019;400(7): 879-893. https://doi.org/10.1515/hsz-2018-0436
33. Usachev K.S., Yusupov M.M., Validov Sh.Z. Hibernation as a stage of ribosome functioning. Biochemistry (Moscow). 2020;85(11):1434-1442. https://doi.org/10.1134/S0006297920110115
34. Zarkan A., Liu J., Matuszewska M., Gaimster H., Summers D.K. Local and universal action: the paradoxes of indole signalling in bacteria. Trends Microbiol. 2020;28(7):566-577. https://doi.org/10.1016/j.tim.2020.02.007
35. Zhang Y. Persisters, persistent infections and the Yin-Yang model. Emerg. Microbes Infect. 2014;3(1):e3. https://doi.org/10.1038/emi.2014.3