Ascorbate-glutathione cycle in wheat and rice seedlings under anoxia and subsequent reaeration
https://doi.org/10.18699/vjgb-24-06
Abstract
The most important part of the plant antioxidant system is the ascorbate-glutathione cycle (AGC), the activity of which is observed upon exposure to a range of stressors, including lack of O2, and oxidative stress occurring immediately after the restoration of oxygen access, hereafter termed reaeration or post-anoxia. The operation of the AGC (enzymes and low-molecular components) in wheat (Triticum aestivum, cv. Leningradka, non-resistant to hypoxia) and rice (Oryza sativa, cv. Liman, resistant) seedlings after 24 h anoxia and 1 h or 24 h reaeration was studied. Significant accumulation of oxidized forms of ascorbate and glutathione was revealed in the non-resistant plant (wheat) after 24 h of anoxia and reaeration, indicating the development of oxidative stress. In the resistant plant (rice), reduced forms of these antioxidants prevailed both in normoxia and under stress, which may indicate their intensive reduction. In wheat, the activities of ascorbate peroxidase and dehydroascorbate reductase in shoots, and monodehydroascorbate reductase and glutathione reductase in roots decreased under anoxia and reaeration. The activity of antioxidant enzymes was maintained in rice under lack of oxygen (ascorbate peroxidase, glutathione reductase) and increased during post-anoxia (AGC reductases). Anoxia stimulated accumulation of mRNA of the organellar ascorbate peroxidase genes OsAPX3, OsAPX5 in shoots, and OsAPX3-5 and OsAPX7 in roots. At post-anoxia, the contribution of the OsAPX1 and OsAPX2 genes encoding the cytosolic forms of the enzyme increased in the whole plant, and so did that of the OsAPX8 gene for the plastid form of the enzyme. The accumulation of mRNA of the genes OsMDAR2 and OsMDAR4 encoding peroxisomal and cytosolic monodehydroascorbate reductase as well as the OsGR2 and OsGR3 for cytosolic and organellar glutathione reductase was activated during reaeration in shoots and roots. In most cases, O2 deficiency activated the genes encoding the peroxisomal, plastid, and mitochondrial forms of the enzymes, and upon reaeration, an enhanced activity of the genes encoding the cytoplasmic forms was observed. Taken together, the inactivation of AGC enzymes was revealed in wheat seedlings during anoxia and subsequent reaeration, which disrupted the effective operation of the cycle and triggered the accumulation of oxidized forms of ascorbate and glutathione. In rice, anoxia led to the maintenance of the activity of AGC enzymes, and reaeration stimulated it, including at the level of gene expression, which ensured the effective operation of AGC.
Keywords
About the Authors
V. V. YemelyanovRussian Federation
St. Petersburg
E. G. Prikaziuk
Russian Federation
St. Petersburg; Enschede, the Netherlands
V. V. Lastochkin
Russian Federation
St. Petersburg
O. M. Aresheva
Russian Federation
St. Petersburg
T. V. Chirkova
Russian Federation
St. Petersburg
References
1. Arrigoni O., Dipierro S., Borraccino G. Ascorbate free radical reductase, a key enzyme of the ascorbic acid system. FEBS Lett. 1981; 125(2):242-244. DOI 10.1016/0014-5793(81)80729-6
2. Biemelt S., Keetman U., Albrecht G. Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings. Plant Physiol. 1998;116(2):651-658. DOI 10.1104/pp.116.2.651
3. Blokhina O.B., Virolainen E., Fagerstedt K.V., Hoikkala A., Wähälä K., Chirkova T.V. Antioxidant status of anoxia-tolerant and -intolerant plant species under anoxia and reaeration. Physiol. Plant. 2000; 109(4):396-403. DOI 10.1034/j.1399-3054.2000.100405.x
4. Blokhina O.B., Chirkova T.V., Fagerstedt K.V. Anoxic stress leads to hydrogen peroxide formation in plant cells. J. Exp. Bot. 2001; 52(359):1179-1190. DOI 10.1093/jxb/52.359.1179
5. Blokhina O.B., Virolainen E., Fagerstedt K.V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 2003; 91(2):179-194. DOI 10.1093/aob/mcf118
6. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72(1-2):248-254. DOI 10.1016/0003-2697(76)90527-3
7. Chirkova T., Yemelyanov V. The study of plant adaptation to oxygen deficiency in Saint Petersburg University. Biol. Commun. 2018; 63(1):17-31. DOI 10.21638/spbu03.2018.104
8. Chirkova T.V., Novitskaya L.O., Blokhina O.B. Lipid peroxidation and antioxidant systems under anoxia in plants differing in their tolerance to oxygen deficiency. Russ. J. Plant Physiol. 1998;45(1):55-62
9. Damanik R.I., Maziah M., Ismail M.R., Ahmad S., Zain A.M. Responses of the antioxidative enzymes in Malaysian rice (Oryza sativa L.) cultivars under submergence condition. Acta Physiol. Plant. 2010;32(4):739-747. DOI /10.1007/s11738-009-0456-3
10. Ding H., Wang B., Han Y., Li S. The pivotal function of dehydroascorbate reductase in glutathione homeostasis in plants. J. Exp. Bot. 2020;71(12):3405-3416. DOI 10.1093/jxb/eraa107
11. Foyer C.H., Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta. 1976;133(1):21-25. DOI 10.1007/BF00386001
12. Foyer C.H., Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid. Redox Signal. 2009;11(4):861-905. DOI 10.1089/ars.2008.2177
13. Garnczarska M. Response of the ascorbate–glutathione cycle to reaeration following hypoxia in lupine roots. Plant Physiol. Biochem. 2005;43(6):583-590. DOI 10.1016/j.plaphy.2005.05.003
14. Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909-930. DOI 10.1016/j.plaphy.2010.08.016
15. Gill S.S., Anjum N.A., Hasanuzzaman M., Gill R., Trivedi D.K., Ahmad I., Pereira E., Tuteja N. Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol. Biochem. 2013;70:204-212. DOI 10.1016/j.plaphy.2013.05.032
16. Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006;141(2):312-322. DOI 10.1104/pp.106.077073
17. Hasanuzzaman M., Nahar K., Anee T.I., Fujita M. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biol. Plants. 2017;23(2):249-268. DOI 10.1007/s12298-017-0422-2
18. Hasanuzzaman M., Bhuyan M.H.M.B., Anee T.I., Parvin K., Nahar K., Mahmud J.A., Fujita M. Regulation of ascorbate-glutathione path-way in mitigating oxidative damage in plants under abiotic stress. Antioxidants. 2019;8(9):384. DOI 10.3390/antiox8090384
19. Hossain Z., Lopez-Climent M.F., Arbona V., Perez-Clemente R.M., Gomez-Cadenas A. Modulation of the antioxidant system in citrus under waterlogging and subsequent drainage. J. Plant Physiol. 2009; 166(13):1391-1404. DOI 10.1016/j.jplph.2009.02.012
20. Ishikawa T., Shigeoka S. Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci. Biotechnol. Biochem. 2008;72(5): 1143-1154. DOI 10.1271/bbb.80062
21. Kausar R., Hossain Z., Makino T., Komatsu S. Characterization of ascorbate peroxidase in soybean under flooding and drought stresses. Mol. Biol. Rep. 2012;39(12):10573-10579. DOI 10.1007/s11033-012-1945-9
22. Knörzer O.C., Durner J., Boger P. Alterations in the antioxidative system of suspension cultured soybean cells (Glycine max) induced by oxidative stress. Physiol. Plant. 1996;97(2):388-396. DOI 10.1034/j.1399-3054.1996.970225.x
23. Law M.Y., Charles S.A., Halliwell B. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquat. Biochem. J. 1983;210(3):899-903. DOI 10.1042/bj2100899
24. Liu M., Jiang Y. Genotypic variation in growth and metabolic responses of perennial ryegrass exposed to short-term waterlogging and submergence stress. Plant Physiol. Biochem. 2015;95:57-64. DOI 10.1016/j.plaphy.2015.07.008
25. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402-408. DOI 10.1006/meth.2001.1262
26. Morell S., Follmann H., De Tullio M., Haberlein I. Dehydroascorbate and dehydroascorbate reductase are phantom indicators of oxidative stress in plants. FEBS Lett. 1997;414(3):567-570. DOI 10.1016/S0014-5793(97)01074-0
27. Nakano Y., Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22(5):867-880. DOI 10.1093/oxfordjournals.pcp.a076232
28. Nishizawa K., Hiraga S., Yasue H., Chiba M., Tougou M., Nanjo Y., Komatsu S. The synthesis of cytosolic ascorbate peroxidases in germinating seeds and seedlings of soybean and their behavior under flooding stress. Biosci. Biotechnol. Biochem. 2013;77(11):2205-2209. DOI 10.1271/bbb.130384
29. Noctor G., Foyer C.H. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998; 49:249-279. DOI 10.1146/annurev.arplant.49.1.249
30. Palma J.M., Corpas F.J., Del Rio L.A. Proteome of plant peroxisomes: new perspectives on the role of these organelles in cell biology. Proteomics. 2009;9(9):2301-2312. DOI 10.1002/pmic.200700732
31. Paradiso A., Caretto S., Leone A., Bove A., Nisi R., De Gara L. ROS production and scavenging under anoxia and re-oxygenation in Arabidopsis cells: a balance between redox signaling and impairment. Front. Plant Sci. 2016;7:1803. DOI 10.3389/fpls.2016.01803
32. Parlanti S., Kudahettige N.P., Lombardi L., Mensuali-Sodi A., Alpi A., Perata P., Pucciariello C. Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance. Ann. Bot. 2011;107(8):1335-1343. DOI 10.1093/aob/mcr086
33. R Core Team. R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. 2023. (https://www.R-project.org/)
34. Rao M.V., Hale B.A., Ormrod D.P. Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide. Role of antioxidant enzymes. Plant Physiol. 1995;109(2):421-432. DOI 10.1104/pp.109.2.421
35. Sairam R.K., Kumutha D., Ezhilmathi K., Chinnusamy V., Meena R.C. Waterlogging induced oxidative stress and antioxidant enzyme activities in pigeon pea. Biol. Plant. 2009;53(3):493-504. DOI 10.1007/s10535-009-0090-3
36. Sairam R.K., Dharmar K., Lekshmy S., Chinnusamy V. Expression of antioxidant defense genes in mung bean (Vigna radiata L.) roots under water-logging is associated with hypoxia tolerance. Acta Physiol. Plant. 2011;3(3):735-744. DOI 10.1007/s11738-010-0598-3
37. Shikov A.E., Chirkova T.V., Yemelyanov V.V. Post-anoxia in plants: reasons, consequences, and possible mechanisms. Russ. J. Plant Physiol. 2020;67(1):45-59. DOI 10.1134/S1021443720010203
38. Shikov A.E., Chirkova T.V., Yemelyanov V.V. Functions of reactive oxygen species in plant cells under normal conditions and during adaptation. Ecol. Genet. 2021;19(4):343-363. DOI 10.17816/ecogen75975
39. Shikov A.E., Lastochkin V.V., Chirkova T.V., Mukhina Z.M., Yemelyanov V.V. Post-anoxic oxidative injury is more severe than oxidative stress induced by chemical agents in wheat and rice plants. Acta Physiol. Plant. 2022;44(9):90. DOI 10.1007/s11738-022-03429-z
40. Skutnik M., Rychter A.M. Differential response of antioxidant systems in leaves and roots of barley subjected to anoxia and post-anoxia. J. Plant Physiol. 2009;166(9):926-937. DOI 10.1016/j.jplph.2008.11.010
41. Ushimaru T., Shibasaka M., Tsuji H. Development of O2 detoxification system during adaptation to air of submerged rice seedlings. Plant Cell Physiol. 1992;33(8):1065-1071. DOI 10.1093/oxfordjournals.pcp.a078357
42. Ushimaru T., Kanematsu S., Katayama M., Tsujid H. Antioxidative enzymes in seedlings of Nelumbo nucifera germinated under water. Physiol. Plant. 2001;112(1):39-46. DOI 10.1034/j.1399-3054.2001.1120106.x
43. Wang H., Chen Y., Hu W., Snider J.L., Zhou Z. Short-term soil-waterlogging contributes to cotton cross tolerance to chronic elevated temperature by regulating ROS metabolism in the subtending leaf. Plant Physiol. Biochem. 2019;139:333-341. DOI 10.1016/j.plaphy.2019.03.038
44. Wickham H., Averick M., Bryan J., Chang W., McGowan L.D., François R., Grolemund G., Hayes A., Henry L., Hester J., Kuhn M., Pedersen T.L., Miller E., Bache S.M., Müller K., Ooms J., Robinson D., Seidel D.P., Spinu V., Takahashi K., Vaughan D., Wilke C., Woo K., Yutani H. Welcome to the tidyverse. J. Open Source Softw. 2019;4(43):1686. DOI 10.21105/joss.01686
45. Yemelyanov V.V., Lastochkin V.V., Chirkova T.V., Lindberg S.M., Shishova M.F. Indoleacetic acid levels in wheat and rice seedlings under oxygen deficiency and subsequent reoxygenation. Biomolecules. 2020;10(2):276. DOI 10.3390/biom10020276
46. Yemelyanov V.V., Lastochkin V.V., Prikaziuk E.G., Chirkova T.V. Activities of catalase and peroxidase in wheat and rice plants under conditions of anoxia and post-anoxic aeration. Russ. J. Plant Physiol. 2022;69(6):1-15. DOI 10.1134/S1021443722060036
47. Yiu J.-C., Liu C.-W., Fang D.Y., Lai Y.-S. Waterlogging tolerance of Welsh onion (Allium fistulosum L.) enhanced by exogenous spermidine and spermine. Plant Physiol. Biochem. 2009;47(8):710-716. DOI 10.1016/j.plaphy.2009.03.007
48. Yuan L.-B., Dai Y.-S., Xie L.-J., Yu L.-J., Zhou Y., Lai Y.-X., Yang Y.-C., Xu L., Chen Q.-F., Xiao S. Jasmonate regulates plant responses to postsubmergence reoxygenation through transcriptional activation of antioxidant synthesis. Plant Physiol. 2017;173(3):1864-1880. DOI 10.1104/pp.16.01803