Halo-RPD: searching for RNA-binding protein targets in plants
https://doi.org/10.18699/vjgb-24-09
Abstract
Study of RNA-protein interactions and identification of RNA targets are among the key aspects of under-standing RNA biology. Currently, various methods are available to investigate these interactions with, RNA immunoprecipitation (RIP) being the most common. The search for RNA targets has largely been conducted using antibodies to an endogenous protein or to GFP-tag directly. Having to be dependent on the expression level of the target protein and having to spend time selecting highly specific antibodies make immunoprecipitation complicated. Expression of the GFP-fused protein can lead to cytotoxicity and, consequently, to improper recognition or degradation of the chimeric protein. Over the past few years, multifunctional tags have been developed. SNAP-tag and HaloTag allow the target protein to be studied from different perspectives. Labeling of the fusion protein with custom-made fluorescent dyes makes it possible to study protein expression and to localize it in the cell or the whole organism. A high-affinity substrate has been created to allow covalent binding by chimeric proteins, minimizing protein loss during protein isolation. In this paper, a HaloTag-based method, which we called Halo-RPD (HaloTag RNA PullDown), is presented. The proposed protocol uses plants with stable fusion protein expression and Magne® HaloTag® magnetic beads to capture RNA-protein complexes directly from the cytoplasmic lysate of transgenic Arabidopsis thaliana plants. The key stages described in the paper are as follows: (1) preparation of the magnetic beads; (2) tissue homogenization and collection of control samples; (3) precipitation and wash of RNA-protein complexes; (4) evaluation of protein binding efficiency; (5) RNA isolation; (6) analysis of the RNA obtained. Recommendations for better NGS assay designs are provided.
Keywords
About the Author
A. O. ShamustakimovaRussian Federation
Moscow
References
1. Banks C.A.S., Boanca G., Lee Z.T., Eubanks C.G., Hattem G.L., PeakA., Weems L.E., Conkright J.J., Florens L., Washburn M.P. TNIP2 is a hub protein in the NF-κB network with both protein and RNA mediated interactions. Mol. Cell. Proteomics. 2016;15(11):3435-3449. DOI 10.1074/mcp.M116.060509
2. Brooks S.A., Rigby W.F.C. Characterization of the mRNA ligands bound by the RNA binding protein hnRNP A2 utilizing a novel in vivo technique. Nucleic Acids Res. 2000;28(10):e49. DOI 10.1093/nar/28.10.e49
3. Frydrych Capelari É., da Fonseca G.C., Guzman F., Margis R. Circular and micro RNAs from Arabidopsis thaliana flowers are simultaneously isolated from AGO-IP libraries. Plants. 2019;8(9):302. DOI 10.3390/plants8090302
4. Gu J., Wang M., Yang Y., Qiu D., Zhang Y., Ma J., Zhou Y., Hannon G.J., Yu Y. GoldCLIP: gel-omitted ligation-dependent CLIP. Genom. Proteom. Bioinform. 2018;16(2):136-143. DOI 10.1016/j.gpb.2018.04.003
5. Köster T., Meyer K. Plant ribonomics: proteins in search of RNA partners. Trends Plant Sci. 2018;23(4):352-365. DOI 10.1016/j.tplants.2018.01.004
6. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-685. DOI 10.1038/227680a0
7. Li X., Pritykin Y., Concepcion C.P., Lu Y., La Rocca G., Zhang M., King B., Cook P.J., Au Y.W., Popow O., Paulo J.A. Otis H.J., Mastroleo C., Ogrodowski P., Schreiner R., Haigis K.M., Betel D., Leslie C.S., Ventura A. High-resolution in vivo identification of miRNA targets by Halo-enhanced Ago2 pull-down. Mol. Cell. 2020; 79(1):167-179. DOI 10.1016/j.molcel.2020.05.009
8. Los G.V., Encell L.P., McDougall M.G., Hartzell D.D., Karassina N., Zimprich C., Wood M.G., Learish R., Ohana R.F., Urh M., Simpson D., Mendez J., Zimmerman K., Otto P., Vidugiris G., Zhu J., Darzins A., Klaubert D.H., Bulleit R.F., Wood K.V. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 2008;3(6):373-382. DOI 10.1021/cb800025k
9. Petri R., Jakobsson J. Identifying miRNA targets using AGO-RIPseq. In: Lamandé S. (Ed.) mRNA Decay. Methods in Molecular Biology. Vol. 1720. New York: Humana Press, 2018;131-140. DOI 10.1007/978-1-4939-7540-2_9
10. Ramanathan M., Porter D.F., Khavari P.A. Methods to study RNA-protein interactions. Nat. Methods. 2019;16(3):225-234. DOI 10.1038/s41592-019-0330-1
11. Ren Z., Zhang D., Cao L., Zhang W., Zheng H., Liu Z., Han S., Dong Y., Zhu F., Liu H., Su H., Chen Y., Wu L., Zhu Y., Ku L. Functions and regulatory framework of ZmNST3 in maize under lodging and drought stress. Plant Cell Environ. 2020;43(9):2272-2286. DOI 10.1111/pce.13829
12. Samanta S., Thakur J.K. Characterization of mediator complex and its associated proteins from rice. In: Kaufmann K., Mueller-Roeber B. (Eds.) Plant Gene Regulatory Networks. Methods in Molecular Biology. Vol. 1629. New York: Humana Press, 2017;123-140. DOI 10.1007/978-1-4939-7125-1_9
13. Seo J.S., Chua N.H. Analysis of interaction between long noncoding RNAs and protein by RNA immunoprecipitation in Arabidopsis. In: Chekanova J.A., Wang H.-L.V. (Eds.) Plant Long Non-Coding RNAs. Methods in Molecular Biology. Vol. 1933. New York: Humana Press, 2019;289-295. DOI 10.1007/978-1-4939-9045-0_18
14. Sorenson R., Bailey-Serres J. Rapid immunopurification of ribonucleoprotein complexes of plants. In: Alonso J., Stepanova A. (Eds.) Plant Functional Genomics. Methods in Molecular Biology. Vol. 1284. New York: Humana Press, 2015;209-219. DOI 10.1007/978-1-4939-2444-8_10
15. Steffen A., Elgner M., Staiger D. Regulation of flowering time by the RNA-binding proteins AtGRP7 and AtGRP8. Plant Cell Physiol. 2019;60(9):2040-2050. DOI 10.1093/pcp/pcz124
16. Taranov V.V., Zlobin N.E., Evlakov K.I., Shamustakimova A.O., Babakov A.V. Contribution of Eutrema salsugineum cold shock domain structure to the interaction with RNA. Biochemistry (Moscow). 2018;83(11):1369-1379. DOI 10.1134/S000629791811007X
17. Urh M., Hartzell D., Mendez J., Klaubert D.H., Wood K. Methods for detection of protein–protein and protein–DNA interactions using HaloTagl™. In: Zachariou M. (Ed.) Affinity Chromatography. Methods in Molecular Biology. Vol. 421. New York: Humana Press, 2008;191-210. DOI 10.1007/978-1-59745-582-4_13
18. van Dijk M., Visser A., Buabeng K.M., Poutsma A., van der Schors R.C., Oudejans C.B. Mutations within the LINC-HELLP non-coding RNA differentially bind ribosomal and RNA splicing complexes and negatively affect trophoblast differentiation. Hum. Mol. Genet. 2015; 24(19):5475-5485. DOI 10.1093/hmg/ddv274
19. Xing D., Wang Y., Hamilton M., Ben-Hur A., Reddy A.S. Transcriptome-wide identification of RNA targets of Arabidopsis SERINE/ ARGININE-RICH45 uncovers the unexpected roles of this RNA binding protein in RNA processing. Plant Cell. 2015;27(12):3294-3308. DOI 10.1105/tpc.15.00641