Association of three single nucleotide polymorphisms in the LPIN1 gene with milk production traits in cows of the Yaroslavl breed
https://doi.org/10.18699/vjgb-24-14
Abstract
Lipin-1 is a member of the evolutionarily conserved family of proteins and is expressed predominantly in adipose tissue and skeletal muscle. On the one hand, lipin-1 is an enzyme that catalyzes the dephosphorylation of phosphatidic acid to diacylglycerol (DAG) and thus participates in the metabolic pathways of biosynthesis of storage lipids in the cell, membrane phospholipids, and intracellular signaling molecules. On the other hand, lipin-1 is able to be transported from the cytoplasm to the nucleus and is a coactivator of lipid metabolism gene transcription. It was shown, using the analysis of single nucleotide polymorphism (SNP) associations, that the lipin-1 coding gene (LPIN1) is a promising candidate gene for milk production traits in Holstein and Brown Swiss cows. However, it is unclear how much of its effect depends on the breed. The Yaroslavl dairy cattle breed was created in the 18–19 centuries in Russia by breeding northern Great Russian cattle, which were short and poor productive, but well adapted to local climatic conditions and bad food base. It was shown by whole genome genotyping and sequencing that the Yaroslavl breed has unique genetics compared to Russian and other cattle breeds. The aim of the study was to assess the frequency of alleles and genotypes of three SNPs in the LPIN1 gene and to study the association of these SNPs with milk production traits in Yaroslavl cows. Blood samples from 142 cows of the Yaroslavl breed were obtained from two farms in the Yaroslavl region. Genotyping of SNPs was carried out by polymerase chain reaction-restriction fragment length polymorphism method. Associations of SNPs with 305-day milk yield, fat yield, fat percentages, protein yield, and protein percentages were studied from the first to the fourth lactation. Statistical tests were carried out using a mixed linear model, taking into account the relationship between individuals. We identified three SNPs – rs110871255, rs207681322 and rs109039955 with a frequency of a rare allele of 0.042–0.261 in Yaroslavl cows. SNP rs110871255 was associated with fat yield during the third and fourth lactations. SNP rs207681322 was associated with milk yield for the second, third and fourth lactations, as well as protein yield for the third lactation. Thus, we identified significant associations of SNPs rs207681322 and rs110871255 in the LPIN1 gene with a number of milk production traits during several lactations in Yaroslavl cows.
Keywords
About the Authors
A. V. IgoshinRussian Federation
Novosibirsk
T. M. Mishakova
Russian Federation
Novosibirsk
R. B. Aitnazarov
Russian Federation
Novosibirsk
A. V. Ilina
Russian Federation
Yaroslavl Region
D. M. Larkin
United Kingdom
London
N. S. Yudin
Russian Federation
Novosibirsk
References
1. Abdelmanova A.S., Kharzinova V.R., Volkova V.V., Mishina A.I., Dotsev A.V., Sermyagin A.A., Boronetskaya O.I., Petrikeeva L.V., Chinarov R.Y., Brem G., Zinovieva N.A. Genetic diversity of historical and modern populations of Russian cattle breeds revealed by microsatellite analysis. Genes (Basel). 2020;11(8):940. https://doi.org/10.3390/genes11080940
2. Ahmad S.M., Bhat B., Bhat S.A., Yaseen M., Mir S., Raza M., Iquebal M.A., Shah R.A., Ganai N.A. SNPs in mammary gland epithelial cells unraveling potential difference in milk production between Jersey and Kashmiri cattle using RNA sequencing. Front. Genet. 2021;12:666015. https://doi.org/10.3389/fgene.2021.666015
3. Barroso E., Rodríguez-Calvo R., Serrano-Marco L., Astudillo A.M., Balsinde J., Palomer X., Vázquez-Carrera M. The PPARβ/δ activator GW501516 prevents the down-regulation of AMPK caused by a high-fat diet in liver and amplifies the PGC-1α-Lipin 1-PPARα pathway leading to increased fatty acid oxidation. Endocrinology. 2011;152(5):1848-1859. https://doi.org/10.1210/en.2010-1468
4. Bekele R., Taye M., Abebe G., Meseret S. Genomic regions and candidate genes associated with milk production traits in Holstein and its crossbred cattle: a review. Int. J. Genomics. 2023;2023:8497453. https://doi.org/10.1155/2023/8497453
5. Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995;57(1):289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031
6. Bionaz M., Loor J.J. ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. J. Nutr. 2008;138(6): 1019-1024. https://doi.org/10.1093/jn/138.6.1019
7. Brahe L.K., Ängquist L., Larsen L.H., Vimaleswaran K.S., Hager J., Viguerie N., Loos R.J., Handjieva-Darlenska T., Jebb S.A., Hlavaty P., Larsen T.M., Martinez J.A., Papadaki A., Pfeiffer A.F., van Baak M.A., Sørensen T.I., Holst C., Langin D., Astrup A., Saris W.H. Influence of SNPs in nutrient-sensitive candidate genes and gene-diet interactions on blood lipids: the DiOGenes study. Br. J. Nutr. 2013;110(5):790-796. https://doi.org/10.1017/S0007114512006058
8. Buaban S., Puangdee S., Duangjinda M., Boonkum W. Estimation of genetic parameters and trends for production traits of dairy cattle in Thailand using a multiple-trait multiple-lactation test day model. Asian-Australas. J. Anim. Sci. 2020;33(9):1387-1399. https://doi.org/10.5713/ajas.19.0141
9. Cecchinato A., Ribeca C., Chessa S., Cipolat-Gotet C., Maretto F., Casellas J., Bittante G. Candidate gene association analysis for milk yield, composition, urea nitrogen and somatic cell scores in Brown Swiss cows. Animal. 2014;8(7):1062-1070. https://doi.org/10.1017/S1751731114001098
10. Chen S.Y., Gloria L.S., Pedrosa V.B., Doucette J., Boerman J.P., Brito L.F. Unravelling the genomic background of resilience based on variability in milk yield and milk production levels in North American Holstein cattle through GWAS and Mendelian randomization analyses. J. Dairy Sci. 2023;107:1035-1053. https://doi.org/10.3168/jds.2023-23650
11. Chen Y., Rui B.B., Tang L.Y., Hu C.M. Lipin family proteins - key regulators in lipid metabolism. Ann. Nutr. Metab. 2015;66(1):10-18. https://doi.org/10.1159/000368661
12. Csaki L.S., Dwyer J.R., Fong L.G., Tontonoz P., Young S.G., Reue K. Lipins, lipinopathies, and the modulation of cellular lipid storage and signaling. Prog. Lipid Res. 2013;52(3):305-316. https://doi.org/10.1016/j.plipres.2013.04.001
13. Dimov G., Albuquerque L.G., Keown J.F., Van Vleck L.D., Norman H.D. Variance of interaction effects of sire and herd for yield traits of Holsteins in California, New York, and Pennsylvania with an animal model. J. Dairy Sci. 1995;78(4):939-946. https://doi.org/10.3168/jds.S0022-0302(95)76709-1
14. Dmitriev N.G. Breed Cattle by Countries of the World. Leningrad: Kolos Publ., 1978 (in Russian)
15. Dmitriev N.G., Ernst L.K. (Eds.) Animal Genetics Resources of the USSR. Rome: Food and Agriculture Organization of the United Nations, 1989
16. Du X., Zhou H., Liu X., Li Y., Hickford J.G.H. Sequence variation in the bovine lipin-1 gene (LPIN1) and its association with milk fat and protein contents in New Zealand Holstein-Friesian × Jersey (HF × J)-cross dairy cows. Animals (Basel). 2021;11(11):3223. https://doi.org/10.3390/ani11113223
17. Dunin I.M., Dankvert A.G. (Eds.) Breeds and Types of Farm Animals in the Russian Federation. Moscow: All-Russia Research Institute of Animal Breeding, 2013 (in Russian)
18. Fang L., Cai W., Liu S., Canela-Xandri O., Gao Y., Jiang J., Rawlik K., Li B., Schroeder S.G., Rosen B.D., Li C.J., Sonstegard T.S., Alexander L.J., Van Tassell C.P., Van Raden P.M., Cole J.B., Yu Y., Zhang S., Tenesa A., Ma L., Liu G.E. Comprehensive analyses of 723 transcriptomes enhance genetic and biological interpretations for complex traits in cattle. Genome Res. 2020;30(5):790-801. https://doi.org/10.1101/gr.250704.119
19. Gutierrez-Reinoso M.A., Aponte P.M., Garcia-Herreros M. Genomic analysis, progress and future perspectives in dairy cattle selection: a review. Animals (Basel). 2021;11(3):599. https://doi.org/10.3390/ani11030599
20. Haldane J.B.S. An exact test for randomness of mating. J. Genet. 1954; 52:631-635. https://doi.org/10.1007/BF02985085
21. Han B., Yuan Y., Liang R., Li Y., Liu L., Sun D. Genetic effects of LPIN1 polymorphisms on milk production traits in dairy cattle. Genes (Basel). 2019;10(4):265. https://doi.org/10.3390/genes10040265
22. Han L.Q., Li H.J., Wang Y.Y., Zhu H.S., Wang L.F., Guo Y.J., Lu W.F., Wang Y.L., Yang G.Y. mRNAabundance and expression of SLC27A, ACC, SCD, FADS, LPIN, INSIG, and PPARGC1 gene isoforms in mouse mammary glands during the lactation cycle. Genet. Mol. Res. 2010;9(2):1250-1257. https://doi.org/10.4238/vol9-2gmr814
23. He X.P., Xu X.W., Zhao S.H., Fan B., Yu M., Zhu M.J., Li C.C., Peng Z.Z., Liu B. Investigation of Lpin1 as a candidate gene for fat deposition in pigs. Mol. Biol. Rep. 2009;36(5):1175-1180. https://doi.org/10.1007/s11033-008-9294-4
24. Hedrick P.W. Genetics of Populations. Jones & Bartlett Learning, 2005 Hillers J.K., Williams G.F. “Shook” factors and lactation milk yield. Extension Bull. (Wash. State Univ.). 1981;EB0779
25. Huang S., Huang S., Wang X., Zhang Q., Liu J., Leng Y. Downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes. Int. J. Biol. Sci. 2017;13(1):1-12. https://doi.org/10.7150/ijbs.17149
26. Ilatsia E.D., Muasya T.K., Muhuyi W.B., Kahi A.K. Genetic and phenotypic parameters for test day milk yield of Sahiwal cattle in the semi-arid tropics. Animal. 2007;1(2):185-192. https://doi.org/10.1017/S175173110739263X
27. Iso-Touru T., Tapio M., Vilkki J., Kiseleva T., Ammosov I., Ivanova Z., Popov R., Ozerov M., Kantanen J. Genetic diversity and genomic signatures of selection among cattle breeds from Siberia, eastern and northern Europe. Anim. Genet. 2016;47(6):647-657. https://doi.org/10.1111/age.12473
28. Kadegowda A.K., Bionaz M., Piperova L.S., Erdman R.A., Loor J.J. Peroxisome proliferator-activated receptor-gamma activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. J. Dairy Sci. 2009;92(9): 4276-4289. https://doi.org/10.3168/jds.2008-1932
29. Khatkar M.S., Thomson P.C., Tammen I., Raadsma H.W. Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genet. Sel. Evol. 2004;36(2):163-190. https://doi.org/10.1186/1297-9686-36-2-163
30. Kim H.E., Bae E., Jeong D.Y., Kim M.J., Jin W.J., Park S.W., Han G.S., Carman G.M., Koh E., Kim K.S. Lipin1 regulates PPARγ transcriptional activity. Biochem. J. 2013;453(1):49-60. https://doi.org/10.1042/BJ20121598
31. Lee Y.M., Dang C.G., Alam M.Z., Kim Y.S., Cho K.H., Park K.D., Kim J.J. The effectiveness of genomic selection for milk production traits of Holstein dairy cattle. Asian-Australas. J. Anim. Sci. 2020; 33(3):382-389. https://doi.org/10.5713/ajas.19.0546
32. Li Q., Liang R., Li Y., Gao Y., Li Q., Sun D., Li J. Identification of candidate genes for milk production traits by RNA sequencing on bovine liver at different lactation stages. BMC Genet. 2020;21(1): 72. https://doi.org/10.1186/s12863-020-00882-y
33. Lopdell T.J. Using QTL to identify genes and pathways underlying the regulation and production of milk components in cattle. Animals (Basel). 2023;13(5):911. https://doi.org/10.3390/ani13050911
34. Lu G., Moriyama E.N. Vector NTI, a balanced all-in-one sequence analysis suite. Brief. Bioinform. 2004;5(4):378-388. https://doi.org/10.1093/bib/5.4.378
35. Lv Y., Guan W., Qiao H., Wang C., Chen F., Zhang Y., Liao Z. Veterinary Medicine and Omics (Veterinomics): metabolic transition of milk triacylglycerol synthesis in sows from late pregnancy to lactation. OMICS. 2015;19(10):602-616. https://doi.org/10.1089/omi.2015.0102
36. Madilindi M.A., Banga C.B., Bhebhe E., Sanarana Y.P., Nxumalo K.S., Taela M.G., Magagula B.S., Mapholi N.O. Genetic diversity and relationships among three Southern African Nguni cattle populations. Trop. Anim. Health Prod. 2020;52(2):753-762. https://doi.org/10.1007/s11250-019-02066-y
37. Melka M.G., Schenkel F.S. Analysis of genetic diversity in Brown Swiss, Jersey and Holstein populations using genome-wide single nucleotide polymorphism markers. BMC Res. Notes. 2012;5:161. https://doi.org/10.1186/1756-0500-5-161
38. Mohammad M.A., Haymond M.W. Regulation of lipid synthesis genes and milk fat production in human mammary epithelial cells during secretory activation. Am. J. Physiol. Endocrinol. Metab. 2013; 305(6):E700-E716. https://doi.org/10.1152/ajpendo.00052.2013
39. Mul J.D., Nadra K., Jagalur N.B., Nijman I.J., Toonen P.W., Médard J.J., Grès S., de Bruin A., Han G.S., Brouwers J.F., Carman G.M., Saulnier-Blache J.S., Meijer D., Chrast R., Cuppen E. A hypomorphic mutation in Lpin1 induces progressively improving neuropathy and lipodystrophy in the rat. J. Biol. Chem. 2011;286(30):26781-26793. https://doi.org/10.1074/jbc.M110.197947
40. Nayak S.S., Panigrahi M., Rajawat D., Ghildiyal K., Sharma A., Parida S., Bhushan B., Mishra B.P., Dutt T. Comprehensive selection signature analyses in dairy cattle exploiting purebred and crossbred genomic data. Mamm. Genome. 2023;34(4):615-631. https://doi.org/10.1007/s00335-023-10021-4
41. Ocampo R.J., Martínez J.F., Martínez R. Assessment of genetic diversity and population structure of Colombian Creole cattle using microsatellites. Trop. Anim. Health Prod. 2021;53(1):122. https://doi.org/10.1007/s11250-021-02563-z
42. Pegolo S., Cecchinato A., Mele M., Conte G., Schiavon S., Bittante G. Effects of candidate gene polymorphisms on the detailed fatty acids profile determined by gas chromatography in bovine milk. J. Dairy Sci. 2016;99(6):4558-4573. https://doi.org/10.3168/jds.2015-10420
43. Persichilli C., Senczuk G., Mastrangelo S., Marusi M., van Kaam J.T., Finocchiaro R., Di Civita M., Cassandro M., Pilla F. Exploring genome-wide differentiation and signatures of selection in Italian and North American Holstein populations. J. Dairy Sci. 2023; 106(8):5537-5553. https://doi.org/10.3168/jds.2022-22159
44. Péterfy M., Phan J., Xu P., Reue K. Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat. Genet. 2001;27(1):121-124. https://doi.org/10.1038/83685
45. Peterson T.R., Sengupta S.S., Harris T.E., Carmack A.E., Kang S.A., Balderas E., Guertin D.A., Madden K.L., Carpenter A.E., Finck B.N., Sabatini D.M. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell. 2011;146(3):408-420. https://doi.org/10.1016/j.cell.2011.06.034
46. Phan J., Reue K. Lipin, a lipodystrophy and obesity gene. Cell Metab. 2005;1(1):73-83. https://doi.org/10.1016/j.cmet.2004.12.002
47. Porto-Neto L.R., Kijas J.W., Reverter A. The extent of linkage disequilibrium in beef cattle breeds using high-density SNP genotypes. Genet. Sel. Evol. 2014;46(1):22. https://doi.org/10.1186/1297-9686-46-22
48. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A., Bender D., Maller J., Sklar P., de Bakker P.I., Daly M.J., Sham P.C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007;81(3):559-575. https://doi.org/10.1086/519795
49. Rajawat D., Panigrahi M., Kumar H., Nayak S.S., Parida S., Bhushan B., Gaur G.K., Dutt T., Mishra B.P. Identification of important genomic footprints using eight different selection signature statistics in domestic cattle breeds. Gene. 2022;816:146165. https://doi.org/10.1016/j.gene.2021.146165
50. Reue K., Zhang P. The lipin protein family: dual roles in lipid biosynthesis and gene expression. FEBS Lett. 2008;582(1):90-96. https://doi.org/10.1016/j.febslet.2007.11.014
51. Robertson A., Hill W.G. Deviations from Hardy-Weinberg proportions: sampling variances and use in estimation of inbreeding coefficients. Genetics. 1984;107(4):703-718. https://doi.org/10.1093/genetics/107.4.703
52. Ruvinskiy D., Igoshin A., Yurchenko A., Ilina A.V., Larkin D.M. Resequencing the Yaroslavl cattle genomes reveals signatures of selection and a rare haplotype on BTA28 likely to be related to breed phenotypes. Anim. Genet. 2022;53(5):680-684. https://doi.org/10.1111/age.13230
53. Sambrook J., Russell D.W. The Condensed Protocols from Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, 2006
54. Saydakova S.S., Morozova K.N., Kiseleva E.V. Lipin family proteins: structure, functions, and related diseases. Cell Tissue Biol. 2021; 15(4):317-325. https://doi.org/10.1134/S1990519X21040076
55. Sermyagin A.A., Dotsev A.V., Gladyr E.A., Traspov A.A., Deniskova T.E., Kostyunina O.V., Reyer H., Wimmers K., Barbato M., Paronyan I.A., Plemyashov K.V., Sölkner J., Popov R.G., Brem G., Zinovieva N.A. Whole-genome SNP analysis elucidates the genetic structure of Russian cattle and its relationship with Eurasian taurine breeds. Genet. Sel. Evol. 2018;50(1):37. https://doi.org/10.1186/s12711-018-0408-8
56. Shichkin G.I., Tyapugin E.E., Dunin I.M., Gerasimova E.V., Kozlova N.A., Myshkina M.S., Semenova N.V., Dunin M.I., Tyapugin S.E. The state of dairy cattle breeding in the Russian Federation. In: Yearbook on Breeding Work in Dairy Cattle Breeding in Farms of the Russian Federation. Moscow: All-Russia Research Institute of Animal Breeding, 2023;3-20 (in Russian)
57. Silpa M.V., König S., Sejian V., Malik P.K., Nair M.R.R., Fonseca V.F.C., Maia A.S.C., Bhatta R. Climate-resilient dairy cattle production: applications of genomic tools and statistical models. Front. Vet. Sci. 2021;8:625189. https://doi.org/10.3389/fvets.2021.625189
58. Singh A., Malla W.A., Kumar A., Jain A., Thakur M.S., Khare V., Tiwari S.P. Review: genetic background of milk fatty acid synthesis in bovines. Trop. Anim. Health Prod. 2023;55(5):328. https://doi.org/10.1007/s11250-023-03754-6
59. Siniossoglou S. Phospholipid metabolism and nuclear function: roles of the lipin family of phosphatidic acid phosphatases. Biochim. Biophys. Acta. 2013;1831(3):575-581. https://doi.org/10.1016/j.bbalip.2012.09.014
60. Sinnwell J.P., Therneau T.M., Schaid D.J. The kinship2 R package for pedigree data. Hum. Hered. 2014;78(2):91-93. https://doi.org/10.1159/000363105
61. Stolpovsky Yu.A., Gosteva E.R., Solodneva E.V. Genetic and Selection Aspects of the History of the Development of Cattle Breeding on the Territory of Russia. Moscow: Akvarel’ Publ., 2022 (in Russian)
62. Storey J.D., Bass A.J., Dabney A., Robinson D. qvalue: Q-value estimation for false discovery rate control. R Package version 2.34.0. 2023. https://doi.org/10.18129/B9.bioc.qvalue. (https://bioconductor.org/packages/qvalue)
63. Suviolahti E., Reue K., Cantor R.M., Phan J., Gentile M., Naukkarinen J., Soro-Paavonen A., Oksanen L., Kaprio J., Rissanen A., Salomaa V., Kontula K., Taskinen M.R., Pajukanta P., Peltonen L. Cross-species analyses implicate Lipin 1 involvement in human glucose metabolism. Hum. Mol. Genet. 2006;15(3):377-386. https://doi.org/10.1093/hmg/ddi448
64. Teng J., Wang D., Zhao C., Zhang X., Chen Z., Liu J., Sun D., Tang H., Wang W., Li J., Mei C., Yang Z., Ning C., Zhang Q. Longitudinal genome-wide association studies of milk production traits in Holstein cattle using whole-genome sequence data imputed from medium-density chip data. J. Dairy Sci. 2023;106(4):2535-2550. https://doi.org/10.3168/jds.2022-22277
65. Thering B.J., Graugnard D.E., Piantoni P., Loor J.J. Adipose tissue lipogenic gene networks due to lipid feeding and milk fat depression in lactating cows. J. Dairy Sci. 2009;92(9):4290-4300. https://doi.org/10.3168/jds.2008-2000
66. Weller J.I., Ron M. Invited review: quantitative trait nucleotide determination in the era of genomic selection. J. Dairy Sci. 2011;94(3): 1082-1090. https://doi.org/10.3168/jds.2010-3793
67. Weller J.I., Ezra E., Ron M. Invited review: a perspective on the future of genomic selection in dairy cattle. J. Dairy Sci. 2017;100(11): 8633-8644. https://doi.org/10.3168/jds.2017-12879
68. Wiggans G.R., Van Vleck L.D. Extending partial lactation milk and fat records with a function of last-sample production. J. Dairy Sci. 1979;62(2):316-325. https://doi.org/10.3168/jds.S0022-0302(79)83242-7
69. Williams M., Sleator R.D., Murphy C.P., McCarthy J., Berry D.P. Exploiting genetic variability in the trajectory of lactation yield and somatic cell score with each progressing parity. J. Dairy Sci. 2022;105(4):3341-3354. https://doi.org/10.3168/jds.2021-21306
70. Yamazaki T., Hagiya K., Takeda H., Osawa T., Yamaguchi S., Nagamine Y. Effects of stage of pregnancy on variance components, daily milk yields and 305-day milk yield in Holstein cows, as estimated by using a test-day model. Animal. 2016;10(8):1263-1270. https://doi.org/10.1017/S1751731116000185
71. Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134. https://doi.org/10.1186/1471-2105-13-134
72. Yurchenko A.A., Daetwyler H.D., Yudin N., Schnabel R.D., Vander Jagt C.J., Soloshenko V., Lhasaranov B., Popov R., Taylor J.F., Larkin D.M. Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation. Sci. Rep. 2018a;8(1):12984. https://doi.org/10.1038/s41598-018-31304-w
73. Yurchenko A., Yudin N., Aitnazarov R., Plyusnina A., Brukhin V., Soloshenko V., Lhasaranov B., Popov R., Paronyan I.A., Plemyashov K.V., Larkin D.M. Genome-wide genotyping uncovers genetic profiles and history of the Russian cattle breeds. Heredity (Edinb). 2018b;120(2):125-137. https://doi.org/10.1038/s41437-017-0024-3
74. Zhang R., Jiang F., Hu C., Yu W., Wang J., Wang C., Ma X., Tang S., Bao Y., Xiang K., Jia W. Genetic variants of LPIN1 indicate an association with Type 2 diabetes mellitus in a Chinese population. Diabet. Med. 2013;30(1):118-122. https://doi.org/10.1111/j.1464-5491.2012.03758.x
75. Zinovieva N.A., Dotsev A.V., Sermyagin A.A., Deniskova T.E., Abdelmanova A.S., Kharzinova V.R., Sölkner J., Reyer H., Wimmers K., Brem G. Selection signatures in two oldest Russian native cattle breeds revealed using high-density single nucleotide polymorphism analysis. PLoS One. 2020;15(11):e0242200. https://doi.org/10.1371/journal.pone.0242200
76. Ziyatdinov A., Vázquez-Santiago M., Brunel H., Martinez-Perez A., Aschard H., Soria J.M. lme4qtl: linear mixed models with flexible covariance structure for genetic studies of related individuals. BMC Bioinformatics. 2018;19(1):68. https://doi.org/10.1186/s12859-018-2057-x