Невирусные системы внутриклеточной доставки инструментов редактирования генома
https://doi.org/10.18699/vjgb-24-28
Аннотация
Последние десятилетия отмечены интенсивным развитием технологий и систем редактирования генов, которое вывело генную инженерию на новый уровень. Важным звеном этих технологий является специфичная и эффективная доставка компонентов таких систем в клетки-мишени. Традиционные векторы не всегда подходят для этой цели ввиду ограниченного объема полезной нагрузки, рисков, связанных с канцерогенезом и иммуногенностью, токсичности, необходимости высокой степени очистки и оценки качества полученных вирусных носителей, а также возможности встраивания вируса в геном хозяина, что может приводить к сверхэкспрессии компонентов вируса и проблемам с безопасностью. Это обусловливает актуальность поиска новых средств внутриклеточной доставки белков и нуклеиновых кислот. В данной работе приведен обзор абиотических векторов и систем доставки инструментов для редактирования генома, включая липосомы и твердые липидные наночастицы, мембранные везикулы иной природы, пептиды, проникающие в клетки, мицеллы, дендримеры, углеродные нанотрубки, неорганические, полимерные и другие наночастицы, металл-органические каркасные полимеры. Рассмотрены их преимущества, недостатки и предпочтительные области применения, а также возможность их использования для доставки систем редактирования генов. Особое внимание уделено металл-органическим каркасным полимерам и их потенциалу в качестве средств избирательной внутриклеточной доставки белков и полинуклеотидов. Сделан вывод о том, что дальнейшее развитие таких векторов и технологий на их основе может привести к появлению безопасных и эффективных систем доставки, способных длительно циркулировать в крови и распознавать клетки-мишени, обеспечивая адресное высвобождение полезной нагрузки в неизменном состоянии и тем самым улучшая результаты редактирования генов.
Об авторах
И. Х. ШайхутдиновРоссия
Самара
П. В. Ильясов
Россия
Самара
О. В. Грибкова
Россия
Самара
Л. В. Лимарева
Россия
Самара
Список литературы
1. Abedi-Gaballu F., Dehghan G., Ghaffari M., Yekta R., Abbaspour-Ra vasjani S., Baradaran B., Dolatabadi J.E.N., Hamblin M.R. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl. Mater. Today. 2018;12:177-190. DOI 10.1016/j.apmt.2018.05.002
2. Alsaiari S.K., Patil S., Alyami M., Alamoudi K.O., Aleisa F.A., Merzaban J.S., Li M., Khashab N.M. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. J. Am. Chem. Soc. 2018;140(1):143-146. DOI 10.1021/jacs.7b11754
3. Alvarez-Erviti L., Seow Y., Yin H., Betts C., Lakhal S., Wood M.J. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 2011;29(4):341-345. DOI 10.1038/nbt.1807
4. Alyami M.Z., Alsaiari S.K., Li Y., Qutub S.S., Aleisa F.A., Sougra R., Merzaban J.S., Khashab N.M. Cell-type-specific CRISPR/Cas9 delivery by biomimetic metal organic frameworks. J. Am. Chem. Soc. 2020;142(4):1715-1720. DOI 10.1021/jacs.9b11638
5. Andey T., Bora-Singhal N., Chellappan S.P., Singh M. Cationic lipoplexes for treatment of cancer stem cell-derived murine lung tumors. Nanomedicine. 2019;18:31-43. DOI 10.1016/j.nano.2019.02.007
6. Ball R.L., Hajj K.A., Vizelman J., Bajaj P., Whitehead K.A. Lipid nanoparticle formulations for enhanced co-delivery of siRNA and mRNA. Nano Lett. 2018;18(6):3814-3822. DOI 10.1021/acs.nanolett.8b01101
7. Basinska T., Gadzinowski M., Mickiewicz D., Slomkowski S. Functionalized particles designed for targeted delivery. Polymers (Basel). 2021;13(12):2022. DOI 10.3390/polym13122022
8. Biswas S., Deshpande P.P., Navarro G., Dodwadkar N.S., Torchilin V.P. Lipid modified triblock PAMAM-based nanocarriers for siRNA drug co-delivery. Biomaterials. 2013;34(4):1289-1301. DOI 10.1016/j.biomaterials.2012.10.024
9. Cheetham A.K., Ferey G., Loiseau T. Open-framework inorganic materials. Angew. Chem. Int. Ed. Engl. 1999;38(22):3268-3292. DOI 10.1002/(SICI)1521-3773(19991115)38:22<3268::AID-ANIE3268>3.0.CO;2-U
10. Chen G., Luo J., Cai M., Qin L., Wang Y., Gao L., Huang P., Yu Y., Ding Y., Dong X., Yin X., Ni J. Investigation of metal-organic framework-5 (MOF-5) as an antitumor drug oridonin sustained release carrier. Molecules. 2019;24(18):3369. DOI 10.3390/molecules24183369
11. Chen R., Huang H., Liu H., Xi J., Ning J., Zeng W., Shen C., Zhang T., Yu G., Xu Q., Chen X., Wang J., Lu F. Friend or foe? Evidence indicates endogenous exosomes can deliver functional gRNA and Cas9 protein. Small. 2019;15(38):e1902686. DOI 10.1002/smll.201902686
12. Chen T.T., Yi J.T., Zhao Y.Y., Chu X. Biomineralized metal-organic framework nanoparticles enable intracellular delivery and endolysosomal release of native active proteins. J. Am. Chem. Soc. 2018;140(31):9912-9920. DOI 10.1021/jacs.8b04457
13. Chen Y., Li P., Modica J.A., Drou R.J. Farha O.K. Acid-resistant mesoporous metal-organic framework toward oral insulin delivery: protein encapsulation, protection, and release. J. Am. Chem. Soc. 2018;140(17):5678-5681. DOI 10.1021/jacs.8b02089
14. Corella-Ochoa M.N., Tapia J.B., Rubin H.N., Lillo V., GonzalezCobos J., Nunez-Rico J.L., Balestra S.R.G., Almora-Barrios N., Lledos M., Guell-Bara A., Cabezas-Gimenez J., EscuderoAdan E.C., Vidal-Ferran A., Calero S., Reynolds M., MartiGastaldo C., Galan-Mascaros J.R. Homochiral metal-organic frameworks for enantio selective separations in liquid chromatography. J. Am. Chem. Soc. 2019;141(36):14306-14316. DOI 10.1021/jacs.9b06500
15. Doyle L.M., Wang M.Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8(7):727. DOI 10.3390/cells8070727
16. Dykman L.A., Khlebtsov N.G. Immunological properties of gold nanoparticles. Chem. Sci. 2017;8(3):1719-1735. DOI 10.1039/c6sc03631g
17. Eygeris Y., Gupta M., Kim J., Sahay G. Chemistry of lipid nanoparticles for RNA delivery. Acc. Chem. Res. 2022;55(1):2-12. DOI 10.1021/acs.accounts.1c00544
18. Fant K., Esbjörner E.K., Lincoln P., Nordén B. DNA condensation by PAMAM dendrimers: self-assembly characteristics and effect on transcription. Biochemistry. 2008;47(6):1732-1740. DOI 10.1021/bi7017199
19. Farha O.K., Eryazici I., Jeong N.C., Hauser B.G., Wilmer C.E., Sarjeant A.A., Snurr R.Q., Nguyen S.T., Yazaydin A.O., Hupp J.T. Me tal-organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 2012;134(36):1501615021. DOI 10.1021/ja3055639
20. Furukawa H., Cordova K.E., O’Keeffe M., Yaghi O.M. The chemistry and applications of metal-Nat. Biomed. Eng. 2017;1(11):854-855. DOI 10.1038/s41551-017-0158-x
21. Hanlon K.S., Kleinstiver B.P., Garcia S.P., Zaborowski M.P., Volak A., Spirig S.E., Muller A., Sousa A.A., Tsai S.Q., Bengtsson N.E., Loov C., Ingelsson M., Chamberlain J.S., Corey D.P., Aryee M.J., Joung J.K., Breakefield X.O., Maguire C.A., Gyorgy B. High levels of AAV vector integration into CRISPR-induced DNA breaks. Nat. Commun. 2019;10(1):4439. DOI 10.1038/s41467-019-12449-2
22. Horcajada P., Gref R., Baati T., Allan P.K., Maurin G., Couvreur P., Ferey G., Morris R.E., Serre C. Metal-organic frameworks in biomedicine. Chem. Rev. 2012;112(2):1232-1268. DOI 10.1021/cr200256v
23. Huang Y., Liu X., Dong L., Liu Z., He X., Liu W. Development of viral vectors for gene therapy for chronic pain. Pain Res. Treat. 2011;2011:968218. DOI 10.1155/2011/968218
24. Jia C., Chen H., Wei M., Chen X., Zhang Y., Cao L., Yuan P., Wang F., Yang G., Ma J. Gold nanoparticle-based miR155 antagonist macrophage delivery restores the cardiac function in ovariectomized diabetic mouse model. Int. J. Nanomedicine. 2017;12:4963-4979. DOI 10.2147/IJN.S138400
25. Kalomiraki M., Thermos K., Chaniotakis N.A. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int. J. Nanomedicine. 2016;11:1-12. DOI 10.2147/IJN.S93069
26. Kamerkar S., LeBleu V.S., Sugimoto H., Yang S., Ruivo C.F., Melo S.A., Lee J.J., Kalluri R. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017;546(7659):498-503. DOI 10.1038/nature22341
27. Kanada M., Bachmann M.H., Hardy J.W., Frimannson D.O., Bronsart L., Wang A., Sylvester M.D., Schmidt T.L., Kaspar R.L., Butte M.J., Matin A.C., Contag C.H. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc. Natl. Acad. Sci. USA. 2015;112(12):E1433-1442. DOI 10.1073/pnas.1418401112
28. Kim D., Le Q.V., Wu Y., Park J., Oh Y.K. Nanovesicle-mediated delivery systems for CRISPR/Cas genome editing. Pharmaceutics. 2020;12(12):1233. DOI 10.3390/pharmaceutics12121233
29. Lee B., Lee K., Panda S., Gonzales-Rojas R., Chong A., Bugay V., Park H.M., Brenner R., Murthy N., Lee H.Y. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat. Biomed. Eng. 2018;2(7):497-507. DOI 10.1038/s41551-0180252-8
30. Li H., Wang K., Sun Y., Lollar C.T., Li J., Zhou H.-C. Recent advances in gas storage and separation using metal-organic frameworks. Materials Today. 2018;21(2):108-121. DOI 10.1016/j.mattod.2017.07.006
31. Li Y., Chen Y., Li J., Zhang Z., Huang C., Lian G., Yang K., Chen S., Lin Y., Wang L., Huang K., Zeng L. Co-delivery of microRNA-21 antisense oligonucleotides and gemcitabine using nanomedicine for pancreatic cancer therapy. Cancer Sci. 2017; 108(7):1493-1503. DOI 10.1111/cas.13267
32. Li Y., Zhang K., Liu P., Chen M., Zhong Y., Ye Q., Wei M.Q., Zhao H., Tang Z. Encapsulation of plasmid DNA by nanoscale metal-organic frameworks for efficient gene transportation and expression. Adv. Mater. 2019;31(29):e1901570. DOI 10.1002/adma.201901570
33. Liang K., Richardson J.J., Cui J., Caruso F., Doonan C.J., Falcaro P. Metal-organic framework coatings as cytoprotective exoskeletons for living cells. Adv. Mater. 2016;28(36):7910-7914. DOI 10.1002/adma.201602335
34. Lin L., Fan Y., Gao F., Jin L., Li D., Sun W., Li F., Qin P., Shi Q., Shi X., Du L. UTMD-promoted co-delivery of gemcitabine and miR-21 inhibitor by dendrimer-entrapped gold nanoparticles for pancreatic cancer therapy. Theranostics. 2018;8(7):1923-1939. DOI 10.7150/thno.22834
35. Liu C., Wan T., Wang H., Zhang S., Ping Y., Cheng Y. A boronic acid-rich dendrimer with robust and unprecedented efficiency for cytoso lic protein delivery and CRISPR-Cas9 gene editing. Sci. Adv. 2019;5(6):eaaw8922. DOI 10.1126/sciadv.aaw8922 Liu J., Chang J., Jiang Y., Meng X., Sun T., Mao L., Xu Q., Wang M. Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles. Adv. Mater. 2019;31(33):e1902575. DOI 10.1002/adma.201902575
36. Lokugamage M.P., Vanover D., Beyersdorf J., Hatit M.Z.C., Rotolo L., Echeverri E.S., Peck H.E., Ni H., Yoon J.K., Kim Y., Santangelo P.J., Dahlman J.E. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 2021;5(9):1059-1068. DOI 10.1038/s41551-021-00786-x
37. Lopez-Vidal E.M., Schisse C.K., Mohapatr S., Bellovodа K., Wu C.L., Woo J.A., Malmberg A.B., Loas A., Gomez-Bombarelli R., Pentelute B.L. Deep learning enables discovery of a short nuclear targeting peptide for efficient delivery of antisense oligomers. JACS Au. 2021;1(11):2009-2020. DOI 10.1021/jacsau.1c00327
38. Lu S., Bao X., Hai W., Shi S., Chen Y., Yu Q., Zhang M., Xu Y., Peng J. Multi-functional self-assembled nanoparticles for pVEGFshRNA loading and anti-tumor targeted therapy. Int. J. Pharm. 2020;575:118898. DOI 10.1016/j.ijpharm.2019.118898
39. Lu Z.R., Laney V.E.A., Hall R., Ayat N. Environment-responsive lipid/siRNA nanoparticles for cancer therapy. Adv. Healthc. Mater. 2021;10(5):e2001294. DOI 10.1002/adhm.202001294
40. Luo Y.L., Xu C.F., Li H.J., Cao Z.T., Liu J., Wang J.L., Du X.J., Yang X.Z., Gu Z., Wang J. Macrophage-specific in vivo gene editing using cationic lipid-assisted polymeric nanoparticles. ACS Nano. 2018;12(2):994-1005. DOI 10.1021/acsnano.7b07874
41. Lyu Y., Yang C., Lyu X., Pu K. Active delivery of CRISPR system using targetable or controllable nanocarriers. Small. 2021;17(24): e2005222. DOI 10.1002/smll.202005222
42. Mbatha L.S., Maiyo F., Daniels A., Singh M. Dendrimer-coated gold nanoparticles for efficient folate-targeted mRNA delivery in vitro. Pharmaceutics. 2021;13(6):900. DOI 10.3390/pharmaceutics13060900
43. Mintzer M.A., Simanek E.E. Nonviral vectors for gene delivery. Chem. Rev. 2009;109(2):259-302. DOI 10.1021/cr800409e
44. Moscoso C.G., Steer C.J. The evolution of gene therapy in the treatment of metabolic liver diseases. Genes (Basel). 2020;11(8): 915. DOI 10.3390/genes11080915
45. Mout R., Ray M., Lee Y.W., Scaletti F., Rotello V.M. In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: progress and challenges. Bioconjug. Chem. 2017a;28(4):880-884. DOI 10.1021/acs.bioconjchem.7b00057
46. Mout R., Ray M., Yesilbag Tonga G., Lee Y.W., Tay T., Sasaki K., Rotello V.M. Direct cytosolic delivery of CRISPR/Cas9ribonucleop rotein for efficient gene editing. ACS Nano. 2017b; 11(3):2452-2458. DOI 10.1021/acsnano.6b07600
47. Nagasaki T., Shinkai S. The concept of molecular machinery is useful for design of stimuli-responsive gene delivery systems in the mammalian cell. J. Incl. Phenom. Macrocycl. Chem. 2007; 58(3-4):205-219. DOI 10.1007/s10847-007-9303-6
48. Niggemann P., Gyorgy B., Chen Z.Y. Genome and base editing for genetic hearing loss. Hear. Res. 2020;394:107958. DOI 10.1016/j.heares.2020.107958
49. Osorio-Toribio G., Velasquez-Hernandez M.J., Mileo P.G.M., Zarate J.A., Aguila-Rosas J., Leyva-Gomez G., Sanchez-Sanchez R., Magana J.J., Perez-Diaz M.A., Lazaro I.A., Forgan R.S., Maurin G., Lima E., Ibarra I.A. Controlled transdermal release of antioxidant ferulate by a porous Sc(III) MOF. iScience. 2020; 23(6):101156. DOI 10.1016/j.isci.2020.101156
50. Patel S., Ashwanikumar N., Robinson E., Xia Y., Mihai C., Griffith J.P., Hou S., Esposito A.A., Ketova T., Welsher K., Joyal J.L., Almarsson Ö., Sahay G. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat. Commun. 2020; 11(1):983. DOI 10.1038/s41467-020-14527-2
51. Paz F.A., Klinowski J., Vilela S.M., Tomé J.P., Cavaleiro J.A., Rocha J. Ligand design for functional metal-organic frameworks. Chem. Soc. Rev. 2012;41(3):1088-1110. DOI 10.1039/C1CS15055C
52. Peng S., Bie B., Sun Y., Liu M., Cong H., Zhou W., Xia Y., Tang H., Deng H., Zhou X. Metal-organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat. Commun. 2018;9(1):1293. DOI 10.1038/s41467-01803650-w
53. Peng S., Liu J., Qin Y., Wang H., Cao B., Lu L., Yu X. Metalorganic framework encapsulating hemoglobin as a high-stable and long-circulating oxygen carriers to treat hemorrhagic shock. ACS Appl. Mater. Interfaces. 2019;11(39):35604-35612. DOI 10.1021/acsami.9b15037
54. Qiao J., Sun W., Lin S., Jin R., Ma L., Liu Y. Cytosolic delivery of CRISPR/Cas9 ribonucleoproteins for genome editing using chitosan-coated red fluorescent protein. Chem. Commun. (Camb). 2019;55(32):4707-4710. DOI 10.1039/c9cc00010k
55. Ramakrishna S., Kwaku Dad A.B., Beloor J., Gopalappa R., Lee S.K., Kim H. Gene disruption by cell-penetrating peptidemediated delivery of Cas9 protein and guide RNA. Genome Res. 2014;24(6):1020-1027. DOI 10.1101/gr.171264.113
56. Ranjbar M., Pardakhty A., Amanatfard A., Asadipour A. Efficient drug delivery of beta-estradiol encapsulated in Zn-metal-organic framework nanostructures by microwave-assisted coprecipitation method. Drug Des. Devel. Ther. 2018;12:2635-2643. DOI 10.2147/DDDT.S173324
57. Rui Y., Wilson D.R., Choi J., Varanasi M., Sanders K., Karlsson J., Lim M., Green J.J. Carboxylated branched poly(beta-amino ester) nanoparticles enable robust cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci. Adv. 2019;5(12):eaay3255. DOI 10.1126/sciadv.aay3255
58. Samuel M.S., Suman S., Venkateshkannan, Selvarajan E., Mathimani T., Pugazhendhi A. Immobilization of Cu3(btc)2 on graphene oxide-chitosan hybrid composite for the adsorption and photocatalytic degradation of methylene blue. J. Photochem. Photobiol. B. 2020;204:111809. DOI 10.1016/j.jphotobiol.2020.111809
59. Shcharbin D., Shakhbazau A., Bryszewska M. Poly(amidoamine) dendrimer complexes as a platform for gene delivery. Expert Opin. Drug Deliv. 2013;10(12):1687-1698. DOI 10.1517/17425247.2013.853661
60. Shukla R., Bansal V., Chaudhary M., Basu A., Bhonde R.R., Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir. 2005;21(23):10644-10654. DOI 10.1021/la0513712
61. Singh A.V. Biopolymers in drug delivery: a review. Pharmacologyonline. 2011;1:666-674
62. Singh D., Sternberg S.H., Fei J., Doudna J.A., Ha T. Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nat. Commun. 2016;7:12778. DOI 10.1038/ncomms12778
63. Somani S., Laskar P., Altwaijry N., Kewcharoenvong P., Irving C., Robb G., Pickard B.S., Dufès C. PEGylation of polypropylenimine dendrimers: effects on cytotoxicity, DNA condensation, gene deliv ery and expression in cancer cells. Sci. Rep. 2018; 8(1):9410. DOI 10.1038/s41598-018-27400-6
64. Stolzenburg L.R., Harris A. Microvesicle-mediated delivery of miR-1343: impact on markers of fibrosis. Cell Tissue Res. 2018; 371(2):325-338. DOI 10.1007/s00441-017-2697-6
65. Su H., Sun F., Jia J., He H., Wang A., Zhu G. A highly porous me dical metal-organic framework constructed from bioactive curcu min. Chem. Commun. 2015;51(26):5774-5777. DOI 10.1039/c4cc10159f
66. Tang M.X., Redemann C.T., Szoka F.C., Jr. In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug. Chem. 1996;7(6):703-714. DOI 10.1021/bc9600630
67. Tao Y., Yi K., Hu H., Shao D., Li M. Coassembly of nucleus-targeting gold nanoclusters with CRISPR/Cas9 for simultaneous bioimaging and therapeutic genome editing. J. Mater. Chem. B. 2021;9(1):94-100. DOI 10.1039/d0tb01925a Taylor R.E., Zahid M. Cell penetrating peptides, novel vectors for gene therapy. Pharmaceutics. 2020;12(3):225. DOI 10.3390/pharmaceutics12030225
68. Teplensky M.H., Fantham M., Poudel C., Hockings C., Lu M., Guna A., Aragones-Anglada M., Moghadam P.Z., Li P., Farha O.K., Fernández S.B.Q., Richards F.M., Jodrell D.I., Kaminski Schierle G., Kaminski C.F., Fairen-Jimenez D. A highly porous metal-organic framework system to deliver payloads for gene knockdown. Chem. 2019;5(11):2926-2941. DOI 10.1016/j.chempr.2019.08.015
69. Vader P., Mager I., Lee Y., Nordin J.Z., Andaloussi S.E., Wood M.J. Preparation and isolation of siRNA-loaded extracellular vesicles. Methods Mol. Biol. 2017;1545:197-204. DOI 10.1007/978-1-4939-6728-5_14
70. Valtchev V., Mintova S., Tsapatsis M. (Eds.). Ordered Porous Solids. Recent Advances and Prospects. Oxford, Amsterdam: Elsevier, 2009. DOI 10.1016/B978-0-444-53189-6.X0001-7
71. Vinogradov V.V., Drozdov A.S., Mingabudinova L.R., Shabanova E.M., Kolchina N.O., Anastasova E.I., Markova A.A., Shtil A.A., Milichko V.A., Starova G.L., Precker R.L.M., Vinogradov A.V., Hey-Haw kins E., Pidko E.A. Composites based on heparin and MIL-101(Fe): the drug releasing depot for anticoagulant therapy and advanced medical nanofabrication. J. Mater. Chem. B. 2018;6(16):2450-2459. DOI 10.1039/c8tb00072g
72. Wang C., Zhang Y., Dong Y. Lipid nanoparticle-mRNA formulations for therapeutic applications. Acc. Chem. Res. 2021;54(23): 4283-4293. DOI 10.1021/acs.accounts.1c00550
73. Wang H.X., Li M., Lee C.M., Chakraborty S., Kim H.W., Bao G., Leong K.W. CRISPR/Cas9-based genome editing for disease mo deling and therapy: challenges and opportunities for nonviral delivery. Chem. Rev. 2017;117(15):9874-9906. DOI 10.1021/acs.chemrev.6b00799
74. Wang Y., Shahi P.K., Xie R., Zhang H., Abdeen A.A., Yodsanit N., Ma Z., Saha K., Pattnaik B.R., Gong S. A pH-responsive silicametal-organic framework hybrid nanoparticle for the delivery of hydrophilic drugs, nucleic acids, and CRISPR-Cas9 genome- editing machineries. J. Control. Release. 2020;324:194-203. DOI 10.1016/j.jconrel.2020.04.052
75. Wang Z., Cohen S.M. Postsynthetic modification of metal-organic frameworks. Chem. Soc. Rev. 2009;38(5):1315-1329. DOI 10.1039/b802258p
76. Yadav S., Sharma A.K., Kumar P. Nanoscale self-assembly for thera peutic delivery. Front. Bioeng. Biotechnol. 2020;8:127. DOI 10.3389/fbioe.2020.00127
77. Yan Y., Liu X.Y., Lu A., Wang X.Y., Jiang L.X., Wang J.C. Nonviral vectors for RNA delivery. J. Control. Release. 2022;342: 241-279. DOI 10.1016/j.jconrel.2022.01.008
78. Yang J., Zhang Q., Chang H., Cheng Y. Surface-engineered dendrimers in gene delivery. Chem. Rev. 2015;115(11):5274-5300. DOI 10.1021/cr500542t
79. Yang X., Tang Q., Jiang Y., Zhang M., Wang M., Mao L. Nanoscale ATP-responsive zeolitic imidazole Framework-90 as a general platform for cytosolic protein delivery and genome editing. J. Am. Chem. Soc. 2019;141(9):3782-3786. DOI 10.1021/jacs.8b11996
80. Yang Z., Xie J., Zhu J., Kang C., Chiang C., Wang X., Wang X., Kuang T., Chen F., Chen Z., Zhang A., Yu B., Lee R.J., Teng L., Lee L.J. Functional exosome-mimic for delivery of siRNA to cancer: in vitro and in vivo evaluation. J. Control. Release. 2016; 243:160-171. DOI 10.1016/j.jconrel.2016.10.008
81. Yeh W.H., Chiang H., Rees H.A., Edge A.S.B., Liu D.R. In vivo base editing of post-mitotic sensory cells. Nat. Commun. 2018;9(1): 2184. DOI 10.1038/s41467-018-04580-3
82. Yu X., Liang X., Xie H., Kumar S., Ravinder N., Potter J., de Mollerat du Jeu X., Chesnut J.D. Improved delivery of Cas9 protein/gRNA complexes using lipofectamine CRISPRMAX. Biotechnol. Lett. 2016;38(6):919-929. DOI 10.1007/s10529-016-2064-9
83. Yu Y., Ren Y., Shen W., Deng H., Gao Z. Applications of metalorganic frameworks as stationary phases in chromatography. Trends Anal. Chem. 2013;50:33-41. DOI 10.1016/j.trac.2013.04.014
84. Zarebkohan A., Najafi F., Moghimi H.R., Hemmati M., Deevband M.R., Kazemi B. Synthesis and characterization of a PAMAM dendrimer nanocarrier functionalized by SRL peptide Conflict of interest. The authors declare no conflict of interest. for targeted gene deli very to the brain. Eur. J. Pharm. Sci. 2015; 78:19-30. DOI 10.1016/j.ejps.2015.06.024
85. Zhang S., Shen J., Li D., Cheng Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics. 2021;11(2):614-648. DOI 10.7150/thno.47007
86. Zhang Y., Sun C., Wang C., Jankovic K.E., Dong Y. Lipids and lipid derivatives for RNA delivery. Chem. Rev. 2021;121(20): 12181-12277. DOI 10.1021/acs.chemrev.1c00244
87. Zheng Q., Li W., Mao L., Wang M. Nanoscale metal-organic frameworks for the intracellular delivery of CRISPR/Cas9 genome editing machinery. Biomater. Sci. 2021;9(21):7024-7033. DOI 10.1039/d1bm00790d